Refine
Year of publication
- 2003 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
In an attempt to search for potential candidate molecules involved in the pathogenesis of endometriosis, a novel 2910 bp cDNA encoding a putative 411 amino acid protein, shrew-1 was discovered. By computational analysis it was predicted to be an integral membrane protein with an outside-in transmembrane domain but no homology with any known protein or domain could be identified. Antibodies raised against the putative open-reading frame peptide of shrew-1 labelled a protein of ca. 48 kDa in extracts of shrew-1 mRNA positive tissues and also detected ectopically expressed shrew-1. In the course of my PhD work, I confirmed the prediction that shrew-1 is indeed a transmembrane protein, by expressing epitope-tagged shrew-1 in epithelial cells and analysing the transfected cells by surface biotinylation and immunoblots. Additionally, I could show that shrew-1 is able to target to E-cadherin-mediated adherens junctions and interacts with the E-cadherin-catenin complex in polarised MCF7 and MDCK cells, but not with the N-cadherin-catenin complex in non-polarised epithelial cells. A direct interaction of shrew-1 with beta-catenin could be shown in an in vitro pull-down assay. From this data, it could be assumed that shrew-1 might play a role in the function and/or regulation of the dynamics of E-cadherin-mediated junctional complexes. In the next part of my thesis, I showed that stable overexpression of shrew-1 in normal MDCK cells. causes changes in morphology of the cells and turns them invasive. Furthermore, transcription by ²-catenin was activated in these MDCK cells stably overexpressing shrew-1. It was probably the imbalance of shrew-1 protein at the adherens junctions that led to the misregulation of adherens junctions associated proteins, i.e. E-cadherin and beta-catenin. Caveolin-1 is another integral membrane protein that forms complexes with Ecadherin- beta-catenin complexes and also plays a role in the endocytosis of E-cadherin during junctional disruption. By immunofluorescence and biochemical studies, caveolin-1 was identified as another interacting partner of shrew-1. However, the functional relevance of this interaction is still not clear. In conclusion, it can be said that shrew-1 interacts with the key players of invasion and metastasis, E-cadherin and caveolin-1, suggesting its possible role in these processes and making it an interesting candidate to unravel other unknown mechanisms involved in the complex process of invasion.