Refine
Document Type
- Article (9)
- Contribution to a Periodical (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
Institute
- Medizin (6)
- Frankfurt Institute for Advanced Studies (FIAS) (3)
- Physik (3)
- Gesellschaftswissenschaften (1)
- Präsidium (1)
The present work deals with the integration of variable renewable energy sources, wind and solar energy into the European and US power grid. In contrast to other networks, such as the gas supply mains, the electricity network is practically not able to store energy. Generation and consumption therefore always have tobe balanced. Currently, the load curve is viewed as a rigid boundary condition, which must be followed by the generation system. The basic idea of the approach followed here is that weather-dependent generation causes a shift of focus of the electricity supply. At high shares of wind and solar generation, the role of the rigid boundary condition falls to the residual load, that is, the remaining load after subtraction of renewable generation. The goal is to include the weather dependence as well as the load curve in the design of the future electricity supply.
After a brief introduction, the present work first turns to the underlying weather-, generation and load data, which form the starting point of the analysis. In addition, some basic concepts of energy economics are discussed, which are needed in the following.
In the main part of the thesis, several algorithms are developed to determine the load flow in a network with a high share of wind and solar energy and to determine the backup supply needed at the same time. Minimization of the energy needed from controllable power plants, the capacity variable power plants, and the capacity of storing serve as guiding principles. In addition, the optimization problem of grid extensions is considered. It is shown that it can be formulated as a convex optimization problem. It turns out that with an optimized, international transmission network which is about four times the currently available transmission capacity, much of the potential savings in backup energy (about 40%) in Europe can be reached. In contrast, a twelvefold increase the transmission capacity would be necessary for a complete implementation of all possible savings in dispatchable power plants.
The reduction of the dispatchable generation capacity and storage capacity, however, presents a greater challenge. Due to correlations in the generation of time series of individual countries, it may be reduced only with difficulty, and by only about 30%.
In the following, the influence of the relative share of wind and solar energy is illuminated and examined the interplay with the line capacitance. A stronger transmission network tends to lead to a higher proportion of wind energy being better integrated. With increasing line capacity, the optimal mix in Europe therefore shifts from about 70% to 80% wind. Similar analyses are carried out for the US with comparable results.
In addition, the cost of the overall system can be reduced. It is interesting at this point that the advantages for the network integration may outweigh higher production costs of individual technologies, so that it is more favourable from the viewpoint of the entire system to use the more expensive technologies.
Finally, attention is given to the flexibility of the dispatchable power plants. Starting from a Fourier-like decomposition of the load curve as it was a few years ago, when hardly renewable generation capacity was present, capacities of different flexibility classes of dispatchable power plant are calculated. For this purpose, it is assumed that the power plant park is able to follow the load curve without significant surplusses or deficits. From this examination, it is derived what capacity must at least be available without having to resort to a detailed database of existing power plants.
Assuming a strong European cooperation, with a stronger international transmission network, the dispatchable power capacity can be significantly reduced while maintaining security of supply and generating relatively small surplusses in dispatchable power plants.
Electroencephalography (EEG) represents a widely established method for assessing altered and typically developing brain function. However, systematic studies on EEG data quality, its correlates, and consequences are scarce. To address this research gap, the current study focused on the percentage of artifact-free segments after standard EEG pre-processing as a data quality index. We analyzed participant-related and methodological influences, and validity by replicating landmark EEG effects. Further, effects of data quality on spectral power analyses beyond participant-related characteristics were explored. EEG data from a multicenter ADHD-cohort (age range 6 to 45 years), and a non-ADHD school-age control group were analyzed (ntotal = 305). Resting-state data during eyes open, and eyes closed conditions, and task-related data during a cued Continuous Performance Task (CPT) were collected. After pre-processing, general linear models, and stepwise regression models were fitted to the data. We found that EEG data quality was strongly related to demographic characteristics, but not to methodological factors. We were able to replicate maturational, task, and ADHD effects reported in the EEG literature, establishing a link with EEG-landmark effects. Furthermore, we showed that poor data quality significantly increases spectral power beyond effects of maturation and symptom severity. Taken together, the current results indicate that with a careful design and systematic quality control, informative large-scale multicenter trials characterizing neurophysiological mechanisms in neurodevelopmental disorders across the lifespan are feasible. Nevertheless, results are restricted to the limitations reported. Future work will clarify predictive value.
Efficacy of platelet-rich fibrin in promoting the healing of extraction sockets: a systematic review
(2021)
Purpose: To address the focused question: in patients with freshly extracted teeth, what is the efficacy of platelet-rich fibrin (PRF) in the prevention of pain and the regeneration of soft tissue and bone compared to the respective control without PRF treatment?
Methods: After an electronic data search in PubMed database, the Web of Knowledge of Thomson Reuters and hand search in the relevant journals, a total of 20 randomized and/or controlled studies were included.
Results: 66.6% of the studies showed that PRF significantly reduced the postoperative pain, especially in the first 1–3 days after tooth extraction. Soft tissue healing was significantly improved in the group of PRF compared to the spontaneous wound healing after 1 week (75% of the evaluated studies). Dimensional bone loss was significantly lower in the PRF group compared to the spontaneous wound healing after 8–15 weeks but not after 6 months. Socket fill was in 85% of the studies significantly higher in the PRF group compared to the spontaneous wound healing.
Conclusions: Based on the analyzed studies, PRF is most effective in the early healing period of 2–3 months after tooth extraction. A longer healing period may not provide any benefits. The currently available data do not allow any statement regarding the long-term implant success in sockets treated with PRF or its combination with biomaterials. Due to the heterogeneity of the evaluated data no meta-analysis was performed.
The transition to a future electricity system based primarily on wind and solar PV is examined for all regions in the contiguous US. We present optimized pathways for the build-up of wind and solar power for least backup energy needs as well as for least cost obtained with a simplified, lightweight model based on long-term high resolution weather-determined generation data. In the absence of storage, the pathway which achieves the best match of generation and load, thus resulting in the least backup energy requirements, generally favors a combination of both technologies, with a wind/solar PV (photovoltaics) energy mix of about 80/20 in a fully renewable scenario. The least cost development is seen to start with 100% of the technology with the lowest average generation costs first, but with increasing renewable installations, economically unfavorable excess generation pushes it toward the minimal backup pathway. Surplus generation and the entailed costs can be reduced significantly by combining wind and solar power, and/or absorbing excess generation, for example with storage or transmission, or by coupling the electricity system to other energy sectors.
High shares of intermittent renewable power generation in a European electricity system will require flexible backup power generation on the dominant diurnal, synoptic, and seasonal weather timescales. The same three timescales are already covered by today’s dispatchable electricity generation facilities, which are able to follow the typical load variations on the intra-day, intra-week, and seasonal timescales. This work aims to quantify the changing demand for those three backup flexibility classes in emerging large-scale electricity systems, as they transform from low to high shares of variable renewable power generation. A weather-driven modelling is used, which aggregates eight years of wind and solar power generation data as well as load data over Germany and Europe, and splits the backup system required to cover the residual load into three flexibility classes distinguished by their respective maximum rates of change of power output. This modelling shows that the slowly flexible backup system is dominant at low renewable shares, but its optimized capacity decreases and drops close to zero once the average renewable power generation exceeds 50% of the mean load. The medium flexible backup capacities increase for modest renewable shares, peak at around a 40% renewable share, and then continuously decrease to almost zero once the average renewable power generation becomes larger than 100% of the mean load. The dispatch capacity of the highly flexible backup system becomes dominant for renewable shares beyond 50%, and reach their maximum around a 70% renewable share. For renewable shares above 70% the highly flexible backup capacity in Germany remains at its maximum, whereas it decreases again for Europe. This indicates that for highly renewable large-scale electricity systems the total required backup capacity can only be reduced if countries share their excess generation and backup power.
We introduce a top-down stylized model to analyse the impact of a transition to a European power system based only on wind and solar power. Wind and solar power generation is calculated from high-resolution weather data and based on the country specific electricity demand alone, we introduce a model of the conventional power system that facilitates simple spatio-temporal modelling of its macroscopic behavior without direct reference to the underlying technological, economical, and political development in the system. Using this model, we find that wind and solar power generation can replace conventional power generation and power capacity to a large degree if power transmission across the continent is made possible.
The induction of apoptosis is a direct way to eliminate tumor cells and improve cancer therapy. Apoptosis is tightly controlled by the balance of pro- and antiapoptotic Bcl-2 proteins. BH3 mimetics neutralize the antiapoptotic function of Bcl-2 proteins and are highly promising compounds inducing apoptosis in several cancer entities including pediatric malignancies. However, the clinical application of BH3 mimetics in solid tumors is impeded by the frequent resistance to single BH3 mimetics and the anticipated toxicity of high concentrations or combination treatments. One potential avenue to increase the potency of BH3 mimetics is the development of immune cell-based therapies to counteract the intrinsic apoptosis resistance of tumor cells and sensitize them to immune attack. Here, we describe spheroid cultures of pediatric cancer cells that can serve as models for drug testing. In these 3D models, we were able to demonstrate that activated allogeneic Natural Killer (NK) cells migrated into tumor spheroids and displayed cytotoxicity against a wide range of pediatric cancer spheroids, highlighting their potential as anti-tumor effector cells. Next, we investigated whether treatment of tumor spheroids with subtoxic concentrations of BH3 mimetics can increase the cytotoxicity of NK cells. Notably, the cytotoxic effects of NK cells were enhanced by the addition of BH3 mimetics. Treatment with either the Bcl-XL inhibitor A1331852 or the Mcl-1 inhibitor S63845 increased the cytotoxicity of NK cells and reduced spheroid size, while the Bcl-2 inhibitor ABT-199 had no effect on NK cell-mediated killing. Taken together, this is the first study to describe the combination of BH3 mimetics targeting Bcl-XL or Mcl-1 with NK cell-based immunotherapy, highlighting the potential of BH3 mimetics in immunotherapy.
Acute kidney injury is associated with mortality in COVID-19 patients. However, host cell changes underlying infection of renal cells with SARS-CoV-2 remain unknown and prevent understanding of the molecular mechanisms that may contribute to renal pathology. Here, we carried out quantitative translatome and whole-cell proteomics analyses of primary renal proximal and distal tubular epithelial cells derived from human donors infected with SARS-CoV-2 or MERS-CoV to disseminate virus and cell type–specific changes over time. Our findings revealed shared pathways modified upon infection with both viruses, as well as SARS-CoV-2-specific host cell modulation driving key changes in innate immune activation and cellular protein quality control. Notably, MERS-CoV infection–induced specific changes in mitochondrial biology that were not observed in response to SARS-CoV-2 infection. Furthermore, we identified extensive modulation in pathways associated with kidney failure that changed in a virus- and cell type–specific manner. In summary, we provide an overview of the effects of SARS-CoV-2 or MERS-CoV infection on primary renal epithelial cells revealing key pathways that may be essential for viral replication.
Bipolar disorder (BD) is a highly heritable neuropsychiatric disease characterized by recurrent episodes of mania and depression. BD shows substantial clinical and genetic overlap with other psychiatric disorders, in particular schizophrenia (SCZ). The genes underlying this etiological overlap remain largely unknown. A recent SCZ genome wide association study (GWAS) by the Psychiatric Genomics Consortium identified 128 independent genome-wide significant single nucleotide polymorphisms (SNPs). The present study investigated whether these SCZ-associated SNPs also contribute to BD development through the performance of association testing in a large BD GWAS dataset (9747 patients, 14278 controls). After re-imputation and correction for sample overlap, 22 of 107 investigated SCZ SNPs showed nominal association with BD. The number of shared SCZ-BD SNPs was significantly higher than expected (p = 1.46x10-8). This provides further evidence that SCZ-associated loci contribute to the development of BD. Two SNPs remained significant after Bonferroni correction. The most strongly associated SNP was located near TRANK1, which is a reported genome-wide significant risk gene for BD. Pathway analyses for all shared SCZ-BD SNPs revealed 25 nominally enriched gene-sets, which showed partial overlap in terms of the underlying genes. The enriched gene-sets included calcium- and glutamate signaling, neuropathic pain signaling in dorsal horn neurons, and calmodulin binding. The present data provide further insights into shared risk loci and disease-associated pathways for BD and SCZ. This may suggest new research directions for the treatment and prevention of these two major psychiatric disorders.