### Refine

#### Document Type

- Article (5)
- Conference Proceeding (3)

#### Language

- English (8)

#### Has Fulltext

- yes (8)

#### Is part of the Bibliography

- no (8)

#### Keywords

- Lattice simulations (1)
- Schwinger–Dyson equations (1)
- Three-gluon vertex (1)
- Zero crossing (1)

#### Institute

- Physik (8)

We study a random matrix model for QCD at finite density via complex Langevin dynamics. This model has a phase transition to a phase with nonzero baryon density. We study the convergence of the algorithm as a function of the quark mass and the chemical potential and focus on two main observables: the baryon density and the chiral condensate. For simulations close to the chiral limit, the algorithm has wrong convergence properties when the quark mass is in the spectral domain of the Dirac operator. A possible solution of this problem is discussed.

From the colour glass condensate to filamentation: systematics of classical Yang–Mills theory
(2019)

The non-equilibrium early time evolution of an ultra-relativistic heavy ion collision is often described by classical lattice Yang–Mills theory, starting from the colour glass condensate (CGC) effective theory with an anisotropic energy momentum tensor as initial condition. In this work we investigate the systematics associated with such studies and their dependence on various model parameters (IR, UV cutoffs and the amplitude of quantum fluctuations) which are not yet fixed by experiment. We perform calculations for SU() and SU(), both in a static box and in an expanding geometry. Generally, the dependence on model parameters is found to be much larger than that on technical parameters like the number of colours, boundary conditions or the lattice spacing. In a static box, all setups lead to isotropisation through chromo-Weibel instabilities, which is illustrated by the accompanying filamentation of the energy density. However, the associated time scale depends strongly on the model parameters and in all cases is longer than the phenomenologically expected one. In the expanding system, no isotropisation is observed for any parameter choice. We show how investigations at fixed initial energy density can be used to better constrain some of the model parameters.

This letter reports on how the Wilson flow technique can efficaciously kill the short-distance quantum fluctuations of 2- and 3-gluon Green functions, remove the ΛQCD scale and destroy the transition from the confining non-perturbative to the asymptotically-free perturbative sector. After the Wilson flow, the behavior of the Green functions with momenta can be described in terms of the quasi-classical instanton background. The same behavior also occurs, before the Wilson flow, at low-momenta. This last result permits applications as, for instance, the detection of instanton phenomenological properties or a determination of the lattice spacing only from the gauge sector of the theory.

We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as ‘zero crossing’, the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev–Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger–Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.

In this contribution we report the status and plans of the open lattice initiative to generate and share new gauge ensembles using the stabilised Wilson fermion framework. The production strategy is presented in terms of a three stage plan alongside summaries of the data management as well as access policies. Current progress in completing the first stage of generating ensembles at four lattice spacings at the flavor symmetric point is given.

The OpenLat initiative presents its results of lattice QCD simulations using Stabilized Wilson Fermions (SWF) using 2+1 quark flavors. Focusing on the SU(3) flavor symmetric point mπ=mK=412 MeV, four different lattice spacings (a=0.064,0.077,0.094,0.12 fm) are used to perform the continuum limit to study cutoff effects. We present results on light hadron masses; for the determination we use a Bayesian analysis framework with constraints and model averaging to minimize the bias in the analysis.

n this joint contribution we announce the formation of the "OPEN LATtice initiative", this https URL, to study Stabilised Wilson Fermions (SWF). They are a new avenue for QCD calculations with Wilson-type fermions and we report results on our continued study of this framework: Tuning the clover improvement coefficient, and extending the reach of lattice spacings to a=0.12 fm. We fix the flavor symmetric points mπ=mK=412 MeV at a=0.055,0.064,0.077,0.094,0.12 fm and define the trajectories to the physical point by fixing the trace of the quark mass matrix. Currently our pion mass range extends down to mπ∼200 MeV. We outline our tuning goals and strategy as well as our future planned ensembles. First scaling studies are performed on fπ and mπ. Additionally results of a preliminary continuum extrapolation of mN at the flavor symmetric point are presented. Going further a first determination of the light and strange hadron spectrum chiral dependence is shown, which serves to check the quality of the action for precision measurements. We also investigate other quantities such as flowed gauge observables to study how the continuum limit is approached. Taken together we observe the SWF enable us to perform stable lattice simulations across a large range of parameters in mass, volume and lattice spacing. Pooling resources our new initiative has made our reported progress possible and through it we will share generated gauge ensembles under an open science philosophy.