Refine
Document Type
- Article (6)
- Conference Proceeding (1)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Adult T-cell acute lymphoblastic leukemia (1)
- BCL11b (1)
- Biophysical chemistry (1)
- CAKUT (1)
- Expression (1)
- Mutation (1)
- Outcome (1)
- Protein folding (1)
- SLC20A1 (1)
- Standard risk (1)
Salt bridges in lipid bilayers play a decisive role in the dynamic assembly and downstream signaling of the natural killer and T-cell receptors. Here, we describe the identification of an inter-subunit salt bridge in the membrane within yet another key component of the immune system, the peptide-loading complex (PLC). The PLC regulates cell surface presentation of self-antigens and antigenic peptides via molecules of the major histocompatibility complex class I. We demonstrate that a single salt bridge in the membrane between the transporter associated with antigen processing TAP and the MHC I-specific chaperone tapasin is essential for the assembly of the PLC and for efficient MHC I antigen presentation. Molecular modeling and all-atom molecular dynamics simulations suggest an ionic lock-switch mechanism for the binding of TAP to tapasin, in which an unfavorable uncompensated charge in the ER-membrane is prevented through complex formation. Our findings not only deepen the understanding of the interaction network within the PLC, but also provide evidence for a general interaction principle of dynamic multiprotein membrane complexes in immunity.
Background: Risk stratification, detection of minimal residual disease (MRD), and implementation of novel therapeutic agents have improved outcome in acute lymphoblastic leukemia (ALL), but survival of adult patients with T-cell acute lymphoblastic leukemia (T-ALL) remains unsatisfactory. Thus, novel molecular insights and therapeutic approaches are urgently needed.
Methods: We studied the impact of B-cell CLL/lymphoma 11b (BCL11b), a key regulator in normal T-cell development, in T-ALL patients enrolled into the German Multicenter Acute Lymphoblastic Leukemia Study Group trials (GMALL; n = 169). The mutational status (exon 4) of BCL11b was analyzed by Sanger sequencing and mRNA expression levels were determined by quantitative real-time PCR. In addition gene expression profiles generated on the Human Genome U133 Plus 2.0 Array (affymetrix) were used to investigate BCL11b low and high expressing T-ALL patients.
Results: We demonstrate that BCL11b is aberrantly expressed in T-ALL and gene expression profiles reveal an association of low BCL11b expression with up-regulation of immature markers. T-ALL patients characterized by low BCL11b expression exhibit an adverse prognosis [5-year overall survival (OS): low 35% (n = 40) vs. high 53% (n = 129), P = 0.02]. Within the standard risk group of thymic T-ALL (n = 102), low BCL11b expression identified patients with an unexpected poor outcome compared to those with high expression (5-year OS: 20%, n = 18 versus 62%, n = 84, P < 0.01). In addition, sequencing of exon 4 revealed a high mutation rate (14%) of BCL11b.
Conclusions: In summary, our data of a large adult T-ALL patient cohort show that low BCL11b expression was associated with poor prognosis; particularly in the standard risk group of thymic T-ALL. These findings can be utilized for improved risk prediction in a significant proportion of adult T-ALL patients, which carry a high risk of standard therapy failure despite a favorable immunophenotype.
The ATP-binding cassette transporter TAPL translocates polypeptides from the cytosol into the lysosomal lumen. TAPL can be divided into two functional units: coreTAPL, active in ATP-dependent peptide translocation, and the N-terminal membrane spanning domain, TMD0, responsible for cellular localization and interaction with the lysosomal associated membrane proteins LAMP-1 and LAMP-2. Although the structure and function of ABC transporters were intensively analyzed in the past, the knowledge about accessory membrane embedded domains is limited. Therefore, we expressed the TMD0 of TAPL via a cell-free expression system and confirmed its correct folding by NMR and interaction studies. In cell as well as cell-free expressed TMD0 forms oligomers, which were assigned as dimers by PELDOR spectroscopy and static light scattering. By NMR spectroscopy of uniformly and selectively isotope labeled TMD0 we performed a complete backbone and partial side chain assignment. Accordingly, TMD0 has a four transmembrane helix topology with a short helical segment in a lysosomal loop. The topology of TMD0 was confirmed by paramagnetic relaxation enhancement with paramagnetic stearic acid as well as by nuclear Overhauser effects with c6-DHPC and cross-peaks with water.
LatticeQCD using OpenCL
(2011)
We show that, under in vitro conditions, the vulnerability of astroglia to hypoxia is reflected by alterations in endothelin (ET)-1 release and capacity of erythropoietin (EPO) to regulate ET-1 levels. Exposure of cells to 24 h hypoxia did not induce changes in ET-1 release, while 48–72 h hypoxia resulted in increase of ET-1 release from astrocytes that could be abolished by EPO. The endothelin receptor type A (ETA) antagonist BQ123 increased extracellular levels of ET-1 in human fetal astroglial cell line (SV-FHAS). The survival and proliferation of rat primary astrocytes, neural precursors, and neurons upon hypoxic conditions were increased upon administration of BQ123. Hypoxic injury and aging affected the interaction between the EPO and ET systems. Under hypoxia EPO decreased ET-1 release from astrocytes, while ETA receptor blockade enhanced the expression of EPO mRNA and EPO receptor in culture-aged rat astroglia. The blockade of ETA receptor can increase the availability of ET-1 to the ETB receptor and can potentiate the neuroprotective effects of EPO. Thus, the new therapeutic use of combined administration of EPO and ETA receptor antagonists during hypoxia-associated neurodegenerative disorders of the central nervous system (CNS) can be suggested.
Previous studies in developing Xenopus and zebrafish reported that the phosphate transporter slc20a1a is expressed in pronephric kidneys. The recent identification of SLC20A1 as a monoallelic candidate gene for cloacal exstrophy further suggests its involvement in the urinary tract and urorectal development. However, little is known of the functional role of SLC20A1 in urinary tract development. Here, we investigated this using morpholino oligonucleotide knockdown of the zebrafish ortholog slc20a1a. This caused kidney cysts and malformations of the cloaca. Moreover, in morphants we demonstrated dysfunctional voiding and hindgut opening defects mimicking imperforate anus in human cloacal exstrophy. Furthermore, we performed immunohistochemistry of an unaffected 6-week-old human embryo and detected SLC20A1 in the urinary tract and the abdominal midline, structures implicated in the pathogenesis of cloacal exstrophy. Additionally, we resequenced SLC20A1 in 690 individuals with bladder exstrophy-epispadias complex (BEEC) including 84 individuals with cloacal exstrophy. We identified two additional monoallelic de novo variants. One was identified in a case-parent trio with classic bladder exstrophy, and one additional novel de novo variant was detected in an affected mother who transmitted this variant to her affected son. To study the potential cellular impact of SLC20A1 variants, we expressed them in HEK293 cells. Here, phosphate transport was not compromised, suggesting that it is not a disease mechanism. However, there was a tendency for lower levels of cleaved caspase-3, perhaps implicating apoptosis pathways in the disease. Our results suggest SLC20A1 is involved in urinary tract and urorectal development and implicate SLC20A1 as a disease-gene for BEEC.
Simple Summary: Renal insufficiency is frequently seen in newly diagnosed multiple myeloma and can be due to the disease itself but also caused by medical interventions or infections. Patients with severe renal insufficiency are known to have an adverse prognosis, but recently, it was shown that even moderately impaired kidney function can have long-term sequelae. Achieving quick disease control by effective antimyeloma therapy can lead to the recovery of renal function. We investigated the kidney-specific variables in a large cohort of 770 myeloma patients receiving three different three-drug regimens for initial myeloma treatment to learn more about the differential effects on kidney function in an early disease phase. All regimens had a positive impact on kidney function without a difference in the proportion of patients who reached normal renal function after three cycles. Interestingly, patients who received bortezomib, lenalidomide, and dexamethasone tended to have higher risk for a worse renal function following induction when compared to the initial values.
Abstract: Background: Preservation of kidney function in newly diagnosed (ND) multiple myeloma (MM) helps to prevent excess toxicity. Patients (pts) from two prospective trials were analyzed, provided postinduction (PInd) restaging was performed. Pts received three cycles with bortezomib (btz), cyclophosphamide, and dexamethasone (dex; VCD) or btz, lenalidomide (len), and dex (VRd) or len, adriamycin, and dex (RAD). The minimum required estimated glomerular filtration rate (eGFR) was >30 mL/min. We analyzed the percent change of the renal function using the International Myeloma Working Group (IMWG) criteria and Kidney Disease: Improving Global Outcomes (KDIGO)-defined categories. Results: Seven hundred and seventy-two patients were eligible. Three hundred and fifty-six received VCD, 214 VRd, and 202 RAD. VCD patients had the best baseline eGFR. The proportion of pts with eGFR <45 mL/min decreased from 7.3% at baseline to 1.9% PInd (p < 0.0001). Thirty-seven point one percent of VCD versus 49% of VRd patients had a decrease of GFR (p = 0.0872). IMWG-defined “renal complete response (CRrenal)” was achieved in 17/25 (68%) pts after VCD, 12/19 (63%) after RAD, and 14/27 (52%) after VRd (p = 0.4747). Conclusions: Analyzing a large and representative newly diagnosed myeloma (NDMM) group, we found no difference in CRrenal that occurred independently from the myeloma response across the three regimens. A trend towards deterioration of the renal function with VRd versus VCD may be explained by a better pretreatment “renal fitness” in the latter group.