Refine
Language
- English (25)
Has Fulltext
- yes (25)
Is part of the Bibliography
- no (25)
Keywords
- Epilepsy (3)
- temporal lobe epilepsy (3)
- Chemotherapy (2)
- Radiotherapy (2)
- Synovial sarcoma (2)
- epilepsy (2)
- hippocampal sclerosis (2)
- inflammation (2)
- status epilepticus (2)
- Adjuvant therapies (1)
Institute
- Medizin (22)
- Frankfurt Institute for Advanced Studies (FIAS) (2)
- Georg-Speyer-Haus (1)
- Physik (1)
Chordomas are rare bone tumors with few therapeutic options. Here we show, using whole-exome and genome sequencing within a precision oncology program, that advanced chordomas (n = 11) may be characterized by genomic patterns indicative of defective homologous recombination (HR) DNA repair and alterations affecting HR-related genes, including, for example, deletions and pathogenic germline variants of BRCA2, NBN, and CHEK2. A mutational signature associated with HR deficiency was significantly enriched in 72.7% of samples and co-occurred with genomic instability. The poly(ADP-ribose) polymerase (PARP) inhibitor olaparib, which is preferentially toxic to HR-incompetent cells, led to prolonged clinical benefit in a patient with refractory chordoma, and whole-genome analysis at progression revealed a PARP1 p.T910A mutation predicted to disrupt the autoinhibitory PARP1 helical domain. These findings uncover a therapeutic opportunity in chordoma that warrants further exploration, and provide insight into the mechanisms underlying PARP inhibitor resistance.
Objective: We sought to evaluate the efficacy and tolerability of intranasal midazolam (in‐MDZ) as first‐line inhospital therapy in patients with status epilepticus (SE) during continuous EEG recording.
Methods: Data on medical history, etiology and semiology of SE, anticonvulsive medication usage, efficacy and safety of in‐MDZ were retrospectively reviewed between 2015 and 2018. Time to end of SE regarding the administration of in‐MDZ and ß‐band effects were analyzed on EEG and with frequency analysis.
Results: In total, 42 patients (mean age: 52.7 ± 22.7 years; 23 females) were treated with a median dose of 5 mg of in‐MDZ (range: 2.5–15 mg, mean: 6.4 mg, SD: 2.6) for SE. The majority of the patients suffered from nonconvulsive SE (n = 24; 55.8%). In total, 24 (57.1%) patients were responders, as SE stopped following the administration of in‐MDZ without any other drugs being given. On average, SE ceased on EEG at 05:05 (minutes:seconds) after the application of in‐MDZ (median: 04:56; range: 00:29–14:53; SD:03:13). Frequency analysis showed an increased ß‐band on EEG after the application of in‐MDZ at 04:07 on average (median: 03:50; range: 02:20–05:40; SD: 01:09). Adverse events were recorded in six patients (14.3%), with nasal irritations present in five (11.9%) and prolonged sedation occurring in one (2.6%) patient.
Conclusions: This pharmaco‐EEG–based study showed that in‐MDZ is effective and well‐tolerated for the acute treatment of SE. EEG and clinical effects of in‐MDZ administration occurred within 04:07 and 5:05 on average. Intranasal midazolam appears to be an easily applicable and rapidly effective alternative to buccal or intramuscular application as first‐line treatment if an intravenous route is not available.
Bipolar disorder (BD) is a genetically complex mental illness characterized by severe oscillations of mood and behavior. Genome-wide association studies (GWAS) have identified several risk loci that together account for a small portion of the heritability. To identify additional risk loci, we performed a two-stage meta-analysis of >9 million genetic variants in 9,784 bipolar disorder patients and 30,471 controls, the largest GWAS of BD to date. In this study, to increase power we used ~2,000 lithium-treated cases with a long-term diagnosis of BD from the Consortium on Lithium Genetics, excess controls, and analytic methods optimized for markers on the Xchromosome. In addition to four known loci, results revealed genome-wide significant associations at two novel loci: an intergenic region on 9p21.3 (rs12553324, p = 5.87×10-9; odds ratio = 1.12) and markers within ERBB2 (rs2517959, p = 4.53×10-9; odds ratio = 1.13). No significant X-chromosome associations were detected and X-linked markers explained very little BD heritability. The results add to a growing list of common autosomal variants involved in BD and illustrate the power of comparing well-characterized cases to an excess of controls in GWAS.
Objective: To evaluate the incidence and risk factors of generalized convulsive seizure (GCS)-related fractures and injuries during video-EEG monitoring.
Methods: We analyzed all GCSs in patients undergoing video-EEG-monitoring between 2007 and 2019 at epilepsy centers in Frankfurt and Marburg in relation to injuries, falls and accidents associated with GCSs. Data were gathered using video material, EEG material, and a standardized reporting form.
Results: A total of 626 GCSs from 411 patients (mean age: 33.6 years; range 3–74 years; 45.0% female) were analyzed. Severe adverse events (SAEs) such as fractures, joint luxation, corneal erosion, and teeth loosening were observed in 13 patients resulting in a risk of 2.1% per GCS (95% CI 1.2–3.4%) and 3.2% per patient (95% CI 1.8–5.2%). Except for a nasal fracture due to a fall onto the face, no SAEs were caused by falls, and all occurred in patients lying in bed without evidence of external trauma. In seven patients, vertebral body compression fractures were confirmed by imaging. This resulted in a risk of 1.1% per GCS (95% CI 0.5–2.2%) and 1.7% per patient (95% CI 0.8–3.3%). These fractures occurred within the tonic phase of a GCS and were accompanied by a characteristic cracking noise. All affected patients reported back pain spontaneously, and an increase in pain on percussion of the affected spine section.
Conclusions: GCSs are associated with a substantial risk of fractures and shoulder dislocations that are not associated with falls. GCSs accompanied by audible cracking, and resulting in back pain, should prompt clinical and imaging evaluations.
Background: As adults with congenital heart disease (ACHD) are getting older, acquired comorbidities play an important role in morbidity and mortality. Data regarding their prevalence in ACHD that are representative on a population level are not available. Methods: The German National Register for Congenital Heart Defects was screened for ACHD. Underlying congenital heart disease (CHD), patient demographics, previous interventional/surgical interventions, and comorbidities were retrieved. Patients <40 years of age were compared to those ≥40 years. Results: A total of 4673 patients (mean age 33.6 ± 10.7 years, female 47.7%) was included. At least one comorbidity was present in 2882 patients (61.7%) altogether, and in 56.8% of patients below vs. 77.7% of patients over 40 years of age (p < 0.001). Number of comorbidities was higher in patients ≥40 years (2.1 ± 2.1) than in patients <40 years (1.2 ± 1.5, p < 0.001). On multivariable regression analysis, age and CHD complexity were significantly associated with the presence and number of comorbidities. Conclusions: At least one acquired comorbidity is present in approximately two-thirds of ACHD. Age and complexity of the CHD are significantly associated with the presence of comorbidities. These findings highlight the importance of addressing comorbidities in ACHD care to achieve optimal long-term outcomes.
Mesial temporal lobe epilepsy (mTLE) is a common form of epilepsy and is characterized by recurrent spontaneous seizures originating from the temporal lobe. The majority of mTLE patients develop pharmacoresistance to available anti-epileptic drugs (AEDs) while exhibiting severe pathological changes that can include hippocampal atrophy, neuronal death, gliosis and chronic seizures. The molecular mechanisms leading to mTLE remain incompletely understood, but are known to include defects in post-transcriptional gene expression regulation, including in non-coding RNAs (ncRNAs). Circular RNAs (circRNAs) are a class of recently rediscovered ncRNAs with high levels of expression in the brain and proposed roles in diverse neuronal processes. To explore a potential role for circRNAs in epilepsy, RNA-sequencing (RNA-seq) was performed on hippocampal tissue from a rat perforant pathway stimulation (PPS) model of TLE at different post-stimulation time points. This analysis revealed 218 differentially expressed (DE) circRNAs. Remarkably, the majority of these circRNAs were changed at the time of the occurrence of the first spontaneous seizure (DOFS). The expression pattern of two circRNAs, circ_Arhgap4 and circ_Nav3, was further validated and linked to miR-6328 and miR-10b-3p target regulation, respectively. This is the first study to examine the regulation of circRNAs during the development of epilepsy. It reveals an intriguing link between circRNA deregulation and the transition of brain networks into the state of spontaneous seizure activity. Together, our results provide a molecular framework for further understanding the role and mechanism-of-action of circRNAs in TLE.
Circulating P2X7 receptor signaling components as diagnostic biomarkers for temporal lobe epilepsy
(2021)
Circulating molecules have potential as biomarkers to support the diagnosis of epilepsy and to assist with differential diagnosis, for example, in conditions resembling epilepsy, such as in psychogenic non-epileptic seizures (PNES). The P2X7 receptor (P2X7R) is an important regulator of inflammation and mounting evidence supports its activation in the brain during epilepsy. Whether the P2X7R or P2X7R-dependent signaling molecules can be used as biomarkers of epilepsy has not been reported. P2X7R levels were analyzed by quantitative ELISA using plasma samples from controls and patients with temporal lobe epilepsy (TLE) or PNES. Moreover, blood cell P2X7R expression and P2X7R-dependent cytokine signature was measured following status epilepticus in P2X7R-EGFP reporter, wildtype, and P2X7R-knockout mice. P2X7R plasma levels were higher in TLE patients when compared with controls and patients with PNES. Plasma levels of the broad inflammatory marker protein C-Reactive protein (CRP) were similar between the three groups. Using P2X7R-EGFP reporter mice, we identified monocytes as the main blood cell type expressing P2X7R after experimentally evoked seizures. Finally, cytokine array analysis in P2X7R-deficient mice identified KC/GRO as a potential P2X7R-dependent plasma biomarker following status epilepticus and during epilepsy. Our data suggest that P2X7R signaling components may be a promising subclass of circulating biomarkers to support the diagnosis of epilepsy.
Current anti-epileptic drugs (AEDs) act on a limited set of neuronal targets, are ineffective in a third of patients with epilepsy, and do not show disease-modifying properties. MicroRNAs are small noncoding RNAs that regulate levels of proteins by post-transcriptional control of mRNA stability and translation. MicroRNA-134 is involved in controlling neuronal microstructure and brain excitability and previous studies showed that intracerebroventricular injections of locked nucleic acid (LNA), cholesterol-tagged antagomirs targeting microRNA-134 (Ant-134) reduced evoked and spontaneous seizures in mouse models of status epilepticus. Translation of these findings would benefit from evidence of efficacy in non-status epilepticus models and validation in another species. Here, we report that electrographic seizures and convulsive behavior are strongly reduced in adult mice pre-treated with Ant-134 in the pentylenetetrazol model. Pre-treatment with Ant-134 did not affect the severity of status epilepticus induced by perforant pathway stimulation in adult rats, a toxin-free model of acquired epilepsy. Nevertheless, Ant-134 post-treatment reduced the number of rats developing spontaneous seizures by 86% in the perforant pathway stimulation model and Ant-134 delayed epileptiform activity in a rat ex vivo hippocampal slice model. The potent anticonvulsant effects of Ant-134 in multiple models may encourage pre-clinical development of this approach to epilepsy therapy.
Background: There are no blood-based molecular biomarkers of temporal lobe epilepsy (TLE) to support clinical diagnosis. MicroRNAs are short noncoding RNAs with strong biomarker potential due to their cell-specific expression, mechanistic links to brain excitability, and stable detection in biofluids. Altered levels of circulating microRNAs have been reported in human epilepsy, but most studies collected samples from one clinical site, used a single profiling platform or conducted minimal validation.
Method: Using a case-control design, we collected plasma samples from video-electroencephalogram-monitored adult TLE patients at epilepsy specialist centers in two countries, performed genome-wide PCR-based and RNA sequencing during the discovery phase and validated findings in a large (>250) cohort of samples that included patients with psychogenic non-epileptic seizures (PNES).
Findings: After profiling and validation, we identified miR-27a-3p, miR-328-3p and miR-654-3p with biomarker potential. Plasma levels of these microRNAs were also changed in a mouse model of TLE but were not different to healthy controls in PNES patients. We determined copy number of the three microRNAs in plasma and demonstrate their rapid detection using an electrochemical RNA microfluidic disk as a prototype point-of-care device. Analysis of the microRNAs within the exosome-enriched fraction provided high diagnostic accuracy while Argonaute-bound miR-328-3p selectively increased in patient samples after seizures. In situ hybridization localized miR-27a-3p and miR-328-3p within neurons in human brain and bioinformatics predicted targets linked to growth factor signaling and apoptosis.
Interpretation: This study demonstrates the biomarker potential of circulating microRNAs for epilepsy diagnosis and mechanistic links to underlying pathomechanisms.
Purpose: Optimization of local therapies in synovial sarcoma (SS) considered unresectable at diagnosis is needed. We evaluated the effects of neoadjuvant versus adjuvant radiation versus surgery only on long-term outcomes.
Methods: Patients with macroscopic SS tumors before chemotherapy (IRS-group-III) in the trials CWS-81, CWS-86, CWS-91, CWS-96, CWS-2002-P and SoTiSaR-registry were analyzed. Local therapies were scheduled after 3 neoadjuvant chemotherapy cycles.
Results: Median age of 145 patients was 14.5 years. 106 survivors had median follow-up of 7.0 years. Tumor site was 96 extremities, 19 head–neck, 16 shoulder/hip, 14 trunk. Tumors were < 3 cm in 16, 3–5 cm in 28, 5–10 cm in 55, > 10 cm in 34 patients. In a secondary resection during chemotherapy, R0-status was accomplished in 82, R1 in 30, R2 in 21 (12 missing). Radiotherapy was administered to 115 (R0 61, R1 29, R2 20, missing 5), thereof 57 before and 52 after tumor resection. 23 were treated with surgery only. For all patients, 5 year event-free (EFS) and overall survival (OS) was 68.9% ± 7.6 (95%CI) and 79.1% ± 6.9. To establish independent significance, tumor site, size, surgical results and sequencing of local therapies were analyzed in a Cox regression analysis. Variables associated with EFS and OS are site, size and sequencing of local therapies. Variables associated with local recurrence are site, surgical results and sequencing of local therapies. The only variable associated with suffering metastatic recurrence is tumor size.
Conclusion: Differences in sequencing of local therapy procedures are independently associated with outcomes. Best local control is achieved when tumors are irradiated pre-operatively and undergo R0 or R1 resection thereafter.