Refine
Document Type
- Article (8)
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- AML (3)
- acute myeloid leukemia (2)
- ATG3 (1)
- ATG8 (1)
- Acute myeloid leukemia (1)
- Autophagy (1)
- Bone marrow aspiration (1)
- CBC (1)
- Fluid overload (1)
- GABARAP (1)
Objectives: Multidrug-resistant organisms (MDRO) are considered an emerging threat worldwide. Data covering the clinical impact of MDRO colonization in patients with solid malignancies, however, is widely missing. We sought to determine the impact of MDRO colonization in patients who have been diagnosed with Non-small cell lung cancer (NSCLC) who are at known high-risk for invasive infections.
Materials and methods: Patients who were screened for MDRO colonization within a 90-day period after NSCLC diagnosis of all stages were included in this single-center retrospective study.
Results: Two hundred and ninety-five patients were included of whom 24 patients (8.1%) were screened positive for MDRO colonization (MDROpos) at first diagnosis. Enterobacterales were by far the most frequent MDRO detected with a proportion of 79.2% (19/24). MDRO colonization was present across all disease stages and more present in patients with concomitant diabetes mellitus. Median overall survival was significantly inferior in the MDROpos study group with a median OS of 7.8 months (95% CI, 0.0–19.9 months) compared to a median OS of 23.9 months (95% CI, 17.6–30.1 months) in the MDROneg group in univariate (p = 0.036) and multivariate analysis (P = 0.02). Exploratory analyses suggest a higher rate of non-cancer-related-mortality in MDROpos patients compared to MDROneg patients (p = 0.002) with an increased rate of fatal infections in MDROpos patients (p = 0.0002).
Conclusions: MDRO colonization is an independent risk factor for inferior OS in patients diagnosed with NSCLC due to a higher rate of fatal infections. Empirical antibiotic treatment approaches should cover formerly detected MDR commensals in cases of (suspected) invasive infections.
Treatment‐related complications contribute substantially to morbidity and mortality in acute myeloid leukemia (AML) patients undergoing induction chemotherapy. Although AML patients are susceptible to fluid overload (FO) (e.g., in the context of chemotherapy protocols, during sepsis treatment or to prevent tumor lysis syndrome), little attention has been paid to its role in AML patients undergoing induction chemotherapy. AML patients receiving induction chemotherapy between 2014 and 2019 were included in this study. FO was defined as ≥5% weight gain on day 7 of induction chemotherapy compared to baseline weight determined on the day of admission. We found FO in 23 (12%) of 187 AML patients undergoing induction chemotherapy. Application of >100 ml crystalloid fluids/kg body weight until day 7 of induction chemotherapy was identified as an independent risk factor for FO. AML patients with FO suffered from a significantly increased 90-day mortality rate and FO was demonstrated as an independent risk factor for 90-day mortality. Our data suggests an individualized, weight-adjusted calculation of crystalloid fluids in order to prevent FO-related morbidity and mortality in AML patients during induction chemotherapy. Prospective trials are required to determine the adequate fluid management in this patient population.
The optimal follow-up care for relapse detection in acute myeloid leukemia (AML) patients in first remission after consolidation therapy with intensive chemotherapy is not established. In this retrospective study, we evaluate the diagnostic value of an intensive relapse surveillance strategy by regular bone marrow aspirations (BMA) in these patients. We identified 86 patients with newly diagnosed non-promyelocytic AML who had reached complete remission (CR) after intensive induction and consolidation chemotherapy between 2007 and 2019. Annual relapse rates were 40%, 17%, and 2% in years 1–3, respectively. Patients in CR were surveilled by BMA scheduled every 3 months for 2 years, followed by BMA every 6 months. This surveillance regimen detected 29 of 55 relapses (53%), 11 of which were molecular relapses (20%). The remaining 26 of 55 relapses (47%) were diagnosed by non-surveillance BMA prompted by specific suspicion of relapse. Most patients showed concurrent morphological abnormalities in peripheral blood (PB) at time of relapse. Seven percent of all morphological relapses occurred without simultaneous PB abnormalities and would have been delayed without surveillance BMA. Intensified monthly PB assessment paired with BMA every 3 months during the first 2 years may be a highly sensitive relapse surveillance strategy.
The mechanistic target of the rapamycin (mTOR) inhibitor, temsirolimus, has significantly improved the outcome of patients with renal cell carcinoma (RCC). However, development of temsirolimus-resistance limits its effect and metastatic progression subsequently recurs. Since integrin α7 (ITGA7) is speculated to promote metastasis, this investigation was designed to investigate whether temsirolimus-resistance is associated with altered ITGA7 expression in RCC cell lines and modified tumor cell adhesion and invasion. Caki-1, KTCTL-26, and A498 RCC cell lines were driven to temsirolimus-resistance by exposing them to temsirolimus over a period of 12 months. Subsequently, adhesion to human umbilical vein endothelial cells, to immobilized fibronectin, or collagen was investigated. Chemotaxis was evaluated with a modified Boyden chamber assay and ITGA7 expression by flow cytometry and western blotting. Chemotaxis significantly decreased in temsirolimus-sensitive cell lines upon exposure to low-dosed temsirolimus, but increased in temsirolimus-resistant tumor cells upon reexposure to the same temsirolimus dose. The increase in chemotaxis was accompanied by elevated ITGA7 at the cell surface membrane with simultaneous reduction of intracellular ITGA7. ITGA7 knock-down significantly diminished motility of temsirolimous-sensitive cells but elevated chemotactic activity of temsirolimus-resistant Caki-1 and KTCTL-26 cells. Therefore, ITGA7 appears closely linked to adhesion and migration regulation in RCC cells. It is postulated that temsirolimus-resistance is associated with translocation of ITGA7 from inside the cell to the outer surface. This switch forces RCC migration forward. Whether ITGA7 can serve as an important target in combatting RCC requires further investigation.
Highlights
• NPM1/NPM1c induce the autophagy-lysosome pathway by activating the master regulator TFEB
• NPM1/NPM1c bind to GABARAP proteins via an atypical module in their N-terminal regions
• The pro-autophagic activity of NPM1c depends on this GABARAP binding module
Summary
The nucleolar scaffold protein NPM1 is a multifunctional regulator of cellular homeostasis, genome integrity, and stress response. NPM1 mutations, known as NPM1c variants promoting its aberrant cytoplasmic localization, are the most frequent genetic alterations in acute myeloid leukemia (AML). A hallmark of AML cells is their dependency on elevated autophagic flux. Here, we show that NPM1 and NPM1c induce the autophagy-lysosome pathway by activating the master transcription factor TFEB, thereby coordinating the expression of lysosomal proteins and autophagy regulators. Importantly, both NPM1 and NPM1c bind to autophagy modifiers of the GABARAP subfamily through an atypical binding module preserved within its N terminus. The propensity of NPM1c to induce autophagy depends on this module, likely indicating that NPM1c exerts its pro-autophagic activity by direct engagement with GABARAPL1. Our data report a non-canonical binding mode of GABARAP family members that drives the pro-autophagic potential of NPM1c, potentially enabling therapeutic options.
Autophagy is an important survival mechanism that allows recycling of nutrients and removal of damaged organelles and has been shown to contribute to the proliferation of acute myeloid leukemia (AML) cells. However, little is known about the mechanism by which autophagy- dependent AML cells can overcome dysfunctional autophagy. In our study we identified autophagy related protein 3 (ATG3) as a crucial autophagy gene for AML cell proliferation by conducting a CRISPR/Cas9 dropout screen with a library targeting around 200 autophagy-related genes. shRNA-mediated loss of ATG3 impaired autophagy function in AML cells and increased their mitochondrial activity and energy metabolism, as shown by elevated mitochondrial ROS generation and mitochondrial respiration. Using tracer-based NMR metabolomics analysis we further demonstrate that the loss of ATG3 resulted in an upregulation of glycolysis, lactate production, and oxidative phosphorylation. Additionally, loss of ATG3 strongly sensitized AML cells to the inhibition of mitochondrial metabolism. These findings highlight the metabolic vulnerabilities that AML cells acquire from autophagy inhibition and support further exploration of combination therapies targeting autophagy and mitochondrial metabolism in AML.
Objectives and Methods: Intracranial hemorrhage (ICH) in acute myeloid leukemia (AML) patients is a major concern due to the increased risk of mortality. Few studies have examined ICH specifically in newly diagnosed AML patients receiving intensive induction chemotherapy (IC) and prophylactic platelet transfusions during thrombocytopenia <10/nL. This retrospective cohort study included 423 newly diagnosed AML patients without acute promyelocytic leukemia who underwent IC between 2007 and 2019. We assessed risk factors, clinical features, and outcomes of ICH.
Results: 17 of 423 patients (4%) suffered ICH during hospital stay, and 4 patients (24%) died directly because of ICH despite routine prophylactic platelet transfusions. Patients with ICH had a negatively impacted overall survival (median OS, 20.1 vs. 104.8 months) and were more likely not to continue with curative treatment. Main risk factors were female gender, severe thrombocytopenia, and decreased fibrinogen. Patients with subsequent ICH also had laboratory signs of liver dysfunction.
Conclusions: Intracranial hemorrhage remains a potentially deadly complication with notable incidence despite prophylactic platelet substitution, suggesting that additional prophylactic interventions may be required to further reduce the frequency of ICH in high-risk patients. Unrecognized genetic factors may simultaneously predispose to AML and platelet dysfunction with ICH.
Objectives and methods: Venous thromboembolic (VTE) events are emerging as frequent complications in acute myeloid leukemia (AML); however, there is insufficient data regarding epidemiology, risk factors, and impact on outcomes. The optimal approach to balance risks of thrombosis and hemorrhage remains unclear. This retrospective single-center study in AML patients undergoing induction chemotherapy between 2007 and 2018 assessed incidence, risk factors, features, and outcomes of early-onset VTE.
Results: 423 patients (median age 59 years) were enrolled. VTE was diagnosed in 31 patients (7.3%) within 3 months of admission. The median time to VTE was 3 days. Non-central venous catheter (CVC)-related VTE occurred in 19 patients (61%). Main risk factor for VTE was leukocytosis at admission, independent of platelet counts/INR. Four patients (13%) exhibited VTE recurrence. No deaths directly related to VTE or major bleeding events associated with platelet-adjusted anticoagulation in patients with VTE were recorded. There was no clear impact of VTE on 1-year overall survival; however, non-CVC-related VTE may be associated with adverse outcomes.
Conclusions: Early-onset VTE is a common complication in newly diagnosed AML patients admitted for induction chemotherapy. Leukocytosis is an independent VTE risk factor. The potentially adverse impact of non-CVC-related VTE merits further study.