Refine
Document Type
- Article (5)
- Conference Proceeding (3)
- Part of a Book (1)
- Habilitation (1)
- Report (1)
Language
- English (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
- GDPR (2)
- Pokémon Go (2)
- privacy concerns (2)
- APCO (1)
- Anonymity Services (1)
- Biomarker (1)
- Cybersecurity (1)
- Data protection (1)
- Digital service chain (1)
- Ethical issues (1)
Institute
When requesting a web-based service, users often fail in setting the website’s privacy settings according to their self privacy preferences. Being overwhelmed by the choice of preferences, a lack of knowledge of related technologies or unawareness of the own privacy preferences are just some reasons why users tend to struggle. To address all these problems, privacy setting prediction tools are particularly well-suited. Such tools aim to lower the burden to set privacy preferences according to owners’ privacy preferences. To be in line with the increased demand for explainability and interpretability by regulatory obligations – such as the General Data Protection Regulation (GDPR) in Europe – in this paper an explainable model for default privacy setting prediction is introduced. Compared to the previous work we present an improved feature selection, increased interpretability of each step in model design and enhanced evaluation metrics to better identify weaknesses in the model’s design before it goes into production. As a result, we aim to provide an explainable and transparent tool for default privacy setting prediction which users easily understand and are therefore more likely to use.
Pokémon Go is one of the most successful mobile games of all time. Millions played and still play this mobile augmented reality (AR) application, although severe privacy issues are pervasive in the app due to its use of several sensors such as location data and camera. In general, individuals regularly use online services and mobile apps although they might know that the use is associated with high privacy risks. This seemingly contradictory behavior of users is analyzed from a variety of different perspectives in the information systems domain. One of these perspectives evaluates privacy-related decision making processes based on concepts from behavioral economics. We follow this line of work by empirically testing one exemplary extraneous factor within the “enhanced APCO model” (antecedents–privacy concerns–outcome). Specific empirical tests on such biases are rare in the literature which is why we propose and empirically analyze the extraneous influence of a positivity bias. In our case, we hypothesize that the bias is induced by childhood brand nostalgia towards the Pokémon franchise. We analyze our proposition in the context of an online survey with 418 active players of the game. Our results indicate that childhood brand nostalgia influences the privacy calculus by exerting a large effect on the benefits within the trade-off and, therefore, causing a higher use frequency. Our work shows two important implications. First, the behavioral economics perspective on privacy provides additional insights relative to previous research. However, the effects of several other biases and heuristics have to be tested in future work. Second, relying on nostalgia represents an important, but also double-edged, instrument for practitioners to market new services and applications.
Privacy concerns as well as trust and risk beliefs are important factors that can influence users’ decision to use a service. One popular model that integrates these factors is relating the Internet Users Information Privacy Concerns (IUIPC) construct to trust and risk beliefs. However, studies haven’t yet applied it to a privacy enhancing technology (PET) such as an anonymization service. Therefore, we conducted a survey among 416 users of the anonymization service JonDonym [1] and collected 141 complete questionnaires. We rely on the IUIPC construct and the related trust-risk model and show that it needs to be adapted for the case of PETs. In addition, we extend the original causal model by including trust beliefs in the anonymization service provider and show that they have a significant effect on the actual use behavior of the PET.
Security has become one of the primary factors that cloud customers consider when they select a cloud provider for migrating their data and applications into the Cloud. To this end, the Cloud Security Alliance (CSA) has provided the Consensus Assessment Questionnaire (CAIQ), which consists of a set of questions that providers should answer to document which security controls their cloud offerings support. In this paper, we adopted an empirical approach to investigate whether the CAIQ facilitates the comparison and ranking of the security offered by competitive cloud providers. We conducted an empirical study to investigate if comparing and ranking the security posture of a cloud provider based on CAIQ’s answers is feasible in practice. Since the study revealed that manually comparing and ranking cloud providers based on the CAIQ is too time-consuming, we designed an approach that semi-automates the selection of cloud providers based on CAIQ. The approach uses the providers’ answers to the CAIQ to assign a value to the different security capabilities of cloud providers. Tenants have to prioritize their security requirements. With that input, our approach uses an Analytical Hierarchy Process (AHP) to rank the providers’ security based on their capabilities and the tenants’ requirements. Our implementation shows that this approach is computationally feasible and once the providers’ answers to the CAIQ are assessed, they can be used for multiple CSP selections. To the best of our knowledge this is the first approach for cloud provider selection that provides a way to assess the security posture of a cloud provider in practice.
Enabling cybersecurity and protecting personal data are crucial challenges in the development and provision of digital service chains. Data and information are the key ingredients in the creation process of new digital services and products. While legal and technical problems are frequently discussed in academia, ethical issues of digital service chains and the commercialization of data are seldom investigated. Thus, based on outcomes of the Horizon2020 PANELFIT project, this work discusses current ethical issues related to cybersecurity. Utilizing expert workshops and encounters as well as a scientific literature review, ethical issues are mapped on individual steps of digital service chains. Not surprisingly, the results demonstrate that ethical challenges cannot be resolved in a general way, but need to be discussed individually and with respect to the ethical principles that are violated in the specific step of the service chain. Nevertheless, our results support practitioners by providing and discussing a list of ethical challenges to enable legally compliant as well as ethically acceptable solutions in the future.
In order to address security and privacy problems in practice, it is very important to have a solid elicitation of requirements, before trying to address the problem. In this thesis, specific challenges of the areas of social engineering, security management and privacy enhancing technologies are analyzed:
Social Engineering: An overview of existing tools usable for social engineering is provided and defenses against social engineering are analyzed. Serious games are proposed as a more pleasant way to raise employees’ awareness and to train them.
Security Management: Specific requirements for small and medium sized energy providers are analyzed and a set of tools to support them in assessing security risks and improving their security is proposed. Larger enterprises are supported by a method to collect security key performance indicators for different subsidiaries and with a risk assessment method for apps on mobile devices. Furthermore, a method to select a secure cloud provider – the currently most popular form of outsourcing – is provided.
Privacy Enhancing Technologies: Relevant factors for the users’ adoption of privacy enhancing technologies are identified and economic incentives and hindrances for companies are discussed. Privacy by design is applied to integrate privacy into the use cases e-commerce and internet of things.
We investigate privacy concerns and the privacy behavior of users of the AR smartphone game Pokémon Go. Pokémon Go accesses several functionalities of the smartphone and, in turn, collects a plethora of data of its users. For assessing the privacy concerns, we conduct an online study in Germany with 683 users of the game. The results indicate that the majority of the active players are concerned about the privacy practices of companies. This result hints towards the existence of a cognitive dissonance, i.e. the privacy paradox. Since this result is common in the privacy literature, we complement the first study with a second one with 199 users, which aims to assess the behavior of users with regard to which measures they undertake for protecting their privacy. The results are highly mixed and dependent on the measure, i.e. relatively many participants use privacy-preserving measures when interacting with their smartphone. This implies that many users know about risks and might take actions to protect their privacy, but deliberately trade-off their information privacy for the utility generated by playing the game.
This paper provides an assessment framework for privacy policies of Internet of Things Services which is based on particular GDPR requirements. The objective of the framework is to serve as supportive tool for users to take privacy-related informed decisions. For example when buying a new fitness tracker, users could compare different models in respect to privacy friendliness or more particular aspects of the framework such as if data is given to a third party. The framework consists of 16 parameters with one to four yes-or-no-questions each and allows the users to bring in their own weights for the different parameters. We assessed 110 devices which had 94 different policies. Furthermore, we did a legal assessment for the parameters to deal with the case that there is no statement at all regarding a certain parameter. The results of this comparative study show that most of the examined privacy policies of IoT devices/services are insufficient to address particular GDPR requirements and beyond. We also found a correlation between the length of the policy and the privacy transparency score, respectively.
Privacy and its protection is an important part of the culture in the USA and Europe. Literature in this field lacks empirical data from Japan. Thus, it is difficult– especially for foreign researchers – to understand the situation in Japan. To get a deeper understanding we examined the perception of a topic that is closely related to privacy: the perceived benefits of sharing data and the willingness to share in respect to the benefits for oneself, others and companies. We found a significant impact of the gender to each of the six analysed constructs.
Background: Recognizing patients at risk for pulmonary complications (PC) is of high clinical relevance. Migration of polymorphonuclear leukocytes (PMN) to inflammatory sites plays an important role in PC, and is tightly regulated by specific chemokines including interleukin (IL)−8 and other mediators such as leukotriene (LT)B4. Previously, we have reported that LTB4 indicated early patients at risk for PC after trauma. Here, the relevance of LTB4 to indicating lung integrity in a newly established long-term porcine severe trauma model (polytrauma, PT) was explored.
Methods: mTwelve pigs (3 months old, 30 ± 5 kg) underwent PT including standardized femur fracture, lung contusion, liver laceration, hemorrhagic shock, subsequent resuscitation and surgical fracture fixation. Six animals served as controls (sham). After 72 h lung damage and inflammatory changes were assessed. LTB4 was determined in plasma before the experiment, immediately after trauma, and after 2, 4, 24 or 72 h. Bronchoalveolar lavage (BAL)-fluid was collected prior and after the experiment.
Results: Lung injury, local gene expression of IL-8, IL-1β, IL-10, IL-18 and PMN-infiltration into lungs increased significantly in PT compared with sham. Systemic LTB4 increased markedly in both groups 4 h after trauma. Compared with declined plasma LTB4 levels in sham, LTB4 increased further in PT after 72 h. Similar increase was observed in BAL-fluid after PT.
Conclusions: In a severe trauma model, sustained changes in terms of lung injury and inflammation are determined at day 3 post-trauma. Specifically, increased LTB4 in this porcine long-term model indicated a rapid inflammatory alteration both locally and systemically. The results support the concept of LTB4 as a biomarker for PC after severe trauma and lung contusion.