Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
Type 1 diabetes (T1D) results from the autoimmune destruction of insulin-producing beta-cells in the pancreas. Recruitment of inflammatory cells is prerequisite to beta-cell-injury. The junctional adhesion molecule (JAM) family proteins JAM-B and JAM–C are involved in polarized leukocyte transendothelial migration and are expressed by vascular endothelial cells of peripheral tissue and high endothelial venules in lympoid organs. Blocking of JAM-C efficiently attenuated cerulean-induced pancreatitis, rheumatoid arthritis or inflammation induced by ischemia and reperfusion in mice. In order to investigate the influence of JAM-C on trafficking and transmigration of antigen-specific, autoaggressive T-cells, we used transgenic mice that express a protein of the lymphocytic choriomeningitis virus (LCMV) as a target autoantigen in the β-cells of the islets of Langerhans under the rat insulin promoter (RIP). Such RIP-LCMV mice turn diabetic after infection with LCMV. We found that upon LCMV-infection JAM-C protein was upregulated around the islets in RIP-LCMV mice. JAM-C expression correlated with islet infiltration and functional beta-cell impairment. Blockade with a neutralizing anti-JAM-C antibody reduced the T1D incidence. However, JAM-C overexpression on endothelial cells did not accelerate diabetes in the RIP-LCMV model. In summary, our data suggest that JAM-C might be involved in the final steps of trafficking and transmigration of antigen-specific autoaggressive T-cells to the islets of Langerhans.
Type 1 diabetes (T1D) is a chronic T cell-mediated autoimmune disorder that results in the destruction of insulin-producing pancreatic ß cells leading to life-long dependence on exogenous insulin. Attraction, activation and transmigration of inflammatory cells to the site of ß-cell injury depend on two major molecular interactions. First, interactions between chemokines and their receptors expressed on leukocytes result in the recruitment of circulating inflammatory cells to the site of injury. In this context, it has been demonstrated in various studies that the interaction of the chemokine CXCL10 with its receptor CXCR3 expressed on circulating cells plays a key role in the development of T1D. Second, once arrived at the site of inflammation adhesion molecules promote the extravasation of arrested cells through the endothelial cell layer to penetrate the site of injury. Here, the junctional adhesion molecule (JAM) JAM-C expressed on endothelial cells is involved in the process of leukocyte diabedesis. It was recently demonstrated that blocking of JAM-C efficiently attenuated cerulein-induced pancreatitis in mice. In my thesis I studied the influence of the CXCL10/CXCR3 interaction on the one hand, and of the adhesion molecule JAM-C on the other hand, on trafficking and transmigration of antigen-specific, autoaggressive T cells in the RIP-LCMV mouse model. RIP-LCMV mice express the glycoprotein (GP) or the nucleoprotein (NP) of the lymphocytic choriomeningitis virus (LCMV) as a target autoantigen specifically in the ß cells of the islets of Langerhans and turn diabetic after LCMV-infection. In my first project I found that pharmacologic blockade of CXCR3 during development of virus-induced T1D results in a significant delay but not in an abrogation of overt disease. However, neither the frequency nor the migratory properties of islet-specific T cells was significantly changed during CXCR3 blockade. In the second project I was able to demonstrate that JAM-C was upregulated around the islets in RIP-LCMV mice after LCMV infection and its expression correlated with islet infiltration and functional ß-cell impairment. Blockade with a neutralizing anti-JAM-C antibody slightly reduced T1D incidence, whereas overexpression of JAM-C on endothelial cells did not accelerate virus-induced diabetes. In summary, our data suggest that both CXCR3 as well as JAM-C are involved in trafficking and transmigration of antigen-specific autoaggressive T cells to the islets of Langerhans. However, the detection of only a moderate influence on the onset of clinical disease during CXCR3 or JAM-C blockade reflects the complex pathogenesis of T1D and indicates that several different inflammatory factors need to be neutralized in order to achieve a stable and persistent protection from disease.