Refine
Document Type
- Article (9)
- Doctoral Thesis (1)
Language
- English (10)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- Accelerators & Beams (2)
- Atomic, Molecular & Optical (2)
- storage rings (2)
- Accelerators & storage rings (1)
- Atomic & molecular beams (1)
- Atoms (1)
- Beam loss (1)
- Charge-transfer collisions (1)
- Circular accelerators (1)
- Electronic transitions (1)
A novel experimental approach for studying exotic transitions in few-electron high-Z ions was developed. In this approach, few-electron ions with selectively produced single K-shell holes are used for the investigation of the transition modes that follow the decay of the excited ions. The feasibility of the developed approach was confirmed by an experimental study of the production of low-lying excited states in He-like uranium, produced by K-shell ionization of initially Li-like species. It was found that K-shell ionization is a very selective process that leads to the production of only two excited states, namely the 1s2s 21S0 and 1s2s 23S1. This high level of selectivity stays undisturbed by the rearrangement processes. These experimental findings can be explained using perturbation theory and an independent-particle model, and are a result of the very different impact parameter dependencies of K-shell ionization and L- intrashell excitation. The L-shell electron can be assumed to stay passive in the collision, whereas the K-shell electron is ionized. It was stressed that the current result might directly be applied to accurate studies of the two-photon decay in He-like ions. Up to now, the experimental challenge in conventional 2E1 experiments has been the photon-photon coincidence technique, which is required to separate the true 2E1 events from the x-ray background associated with single photon transitions. In contrast, by exploiting K-shell ionization, the spectral distribution of the two-photon decay could be obtained simply by a measurement of the photon emission, using only a single x-ray detector in coincidence with projectile ionization. One further particular advantage arises from the fact that the 1s2p 3P0 state is not populated, and does not contribute to the continuum distribution of the two-photon emission. At high Z, this state also undergoes a two-photon E1M1 decay, which would be indistinguishable from the 2E1 decay of the 1s2s 1S0. The first measurement of the two-photon energy distribution from the decay of 1s2s 1S0 level in He-like tin was performed by adopting the technique developed in this thesis. In this technique, excited He-like heavy ions were formed by K-shell ionization of initially Li-like species in collisions with a low-Z gas target, and x-ray spectra following the decay of the He-like ions were measured in coincidence with the up-charged tin ions. The observed intense production of the 2E1 transitions, and a very high level of selectivity, make this process particularly suited for the study of the two-photon continuum, and thus for a detailed investigation of the structure of high-Z He-like systems. The method allowed for a background-free measurement of the distribution of the two-photon decay (21S0 -> 11S0) in He-like tin. The measured distribution could also be discriminated from that of other He-like ions, and confirmed, for the first time, the fully relativistic calculations. In addition, the feasibility of the method was confirmed by studying another exotic transition, namely the two-electron one-photon transition (TEOP) in Li-like high-Z ions. An experimental investigation of the radiative decay modes of the 1s2s2 state in Li-like heavy ions has been started. In the first dedicated beam time at the ESR, selective population of this state via K-shell ionization of initially Be-like species was achieved. The x-rays produced in this process were measured by a multitude of x-ray detectors, each placed under different observation angles with respect to the ion beam direction. The spectra associated with projectile electron loss consist (in all cases) of one single x-ray transition, which was attributed to the TEOP decay to the 1s2 2p1/2 level, possibly contaminated by the M1 decay to the 1s22s. Thus it was proven that, by adopting the developed approach, one can indeed produce the desired initial state. This makes this method perfectly suited for studies of TEOP transitions in high-Z systems. An extension of this study, by the inclusion of an electron spectrometer, would also allow for measurements of the autoionization channel, which would provide complete information on the various decay modes of the 1s2s2 state.
In this paper, we present an experimental and theoretical study of excitation processes for the heaviest stable helium-like ion, that is, He-like uranium occurring in relativistic collisions with hydrogen and argon targets. In particular, we concentrate on angular distributions of the characteristic Kα radiation following the K → L excitation of He-like uranium. We pay special attention to the magnetic sub-level population of the excited 1s2lj states, which is directly related to the angular distribution of the characteristic Kα radiation. We show that the experimental data can be well described by calculations taking into account the excitation by the target nucleus as well as by the target electrons. Moreover, we demonstrate for the first time an important influence of the electron-impact excitation process on the angular distributions of the Kα radiation produced by excitation of He-like uranium in collisions with different targets.
The process of electron-loss to the continuum (ELC) has been studied for the collision systems U28++H2 at a collision energy of 50 MeV/u, U28++N2 at 30 MeV/u, and U28++Xe at 50 MeV/u. The energy distributions of cusp electrons emitted at an angle of 0∘ with respect to the projectile beam were measured using a magnetic forward-angle electron spectrometer. For these collision systems far from equilibrium charge state, a significantly asymmetric cusp shape is observed. The experimental results are compared to calculations based on first-order perturbation theory, which predict an almost symmetric cusp shape. Some possible reasons for this discrepancy are discussed.
Impact parameter sensitive study of inner-shell atomic processes in Xe54+, Xe52+ → Xe collisions
(2020)
In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms. The projectile and target x-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35 - 70 fm.
Accurate spectroscopy of highly-charged high-Z ions in a storage ring is demonstrated to be feasible by the use of specially adapted crystal optics. The method has been applied for the measurement of the 1s Lamb shift in hydrogen-like gold (Au+78) in a storage ring through spectroscopy of the Lyman x-rays. This measurement represents the first result obtained for a high-Z element using high-resolution wavelength-dispersive spectroscopy in the hard x-ray regime, paving the way for sensitivity to higher- order QED effects.
The radiative electron capture (REC) into the K shell of bare Xe ions colliding with a hydrogen gas target has been investigated. In this study, the degree of linear polarization of the K-REC radiation was measured and compared with rigorous relativistic calculations as well as with the previous results recorded for U92+. Owing to the improved detector technology, a significant gain in precision of the present polarization measurement is achieved compared to the previously published results. The obtained data confirms that for medium-Z ions such as Xe, the REC process is a source of highly polarized x rays which can easily be tuned with respect to the degree of linear polarization and the photon energy. We argue, in particular, that for relatively low energies the photons emitted under large angles are almost fully linear polarized.
An experiment addressing electron capture (EC) decay of hydrogen-like 142Pm60+ions has been conducted at the experimental storage ring (ESR) at GSI. The decay appears to be purely exponential and no modulations were observed. Decay times for about 9000 individual EC decays have been measured by applying the single-ion decay spectroscopy method. Both visually and automatically analysed data can be described by a single exponential decay with decay constants of 0.0126(7)s−1 for automatic analysis and 0.0141(7)s−1 for manual analysis. If a modulation superimposed on the exponential decay curve is assumed, the best fit gives a modulation amplitude of merely 0.019(15), which is compatible with zero and by 4.9 standard deviations smaller than in the original observation which had an amplitude of 0.23(4).
The electron-capture process was studied for Xe54+ colliding with H2 molecules at the internal gas target of the Experimental Storage Ring (ESR) at GSI, Darmstadt. Cross-section values for electron capture into excited projectile states were deduced from the observed emission cross section of Lyman radiation, being emitted by the hydrogenlike ions subsequent to the capture of a target electron. The ion beam energy range was varied between 5.5 and 30.9 MeV/u by applying the deceleration mode of the ESR. Thus, electron-capture data were recorded at the intermediate and, in particular, the low-collision-energy regime, well below the beam energy necessary to produce bare xenon ions. The obtained data are found to be in reasonable qualitative agreement with theoretical approaches, while a commonly applied empirical formula significantly overestimates the experimental findings.
We report the first measurement of low-energy proton-capture cross sections of 124Xe in a heavy-ion storage ring. 124Xe54+ ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The 125Cs reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.
The 124Xe(p,γ) reaction has been measured for the first time at energies around the Gamow window by using stored ions at the ESR facility. The desired beam energies below 10 MeV/u introduce new experimental challenges like windowless ions detection under UHV conditions, extremely short beam lifetimes and efficient beam deceleration and cooling, all of which have been successfully met.