Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
- Physik (3)
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
We present the measured correlation functions for pi+ pi-, pi- pi- and pi+ pi+ pairs in central S+Ag collisions at 200 GeV per nucleon. The Gamov function, which has been traditionally used to correct the correlation functions of charged pions for the Coulomb interaction, is found to be inconsistent with all measured correlation functions. Certain problems which have been dominating the systematic uncertainty of the correlation analysis are related to this inconsistency. It is demonstrated that a new Coulomb correction method, based exclusively on the measured correlation function for pi+ pi- pairs, may solve the problem.
The transverse momentum and rapidity distributions of negative hadrons and participant protons have been measured for central 32S+ 32S collisions at plab=200 GeV/c per nucleon. The proton mean rapidity shift < Delta y>~1.6 and mean transverse momentum <pT>~0.6 GeV/c are much higher than in pp or peripheral AA collisions and indicate an increase in the nuclear stopping power. All pT spectra exhibit similar source temperatures. Including previous results for K0s Lambda , and Lambda -bar, we account for all important contributions to particle production.