Refine
Language
- English (120)
Has Fulltext
- yes (120)
Is part of the Bibliography
- no (120)
Keywords
- BESIII (7)
- Branching fraction (5)
- Lepton colliders (3)
- Charm physics (2)
- Charmed mesons (2)
- Electroweak interaction (2)
- Initial state radiation (2)
- Particle decays (2)
- e +-e − Experiments (2)
- Absolute branching fraction (1)
Institute
The polarization of Λ and Λ¯ hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at √sNN = 200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild pT dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagree with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and pT dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy.
Using (448.1±2.9)×106 ψ(3686) events collected with the BESIII detector and a single-baryon tagging technique, we present the first observation of the decays ψ(3686)→Ξ(1530)0Ξ¯(1530)0 and Ξ(1530)0Ξ¯0. The branching fractions are measured to be B(ψ(3686)→Ξ(1530)0Ξ¯(1530)0)=(6.77±0.14±0.39)×10−5 and B(ψ(3686)→Ξ(1530)0Ξ¯0)=(0.53±0.04±0.03)×10−5. Here, the first and second uncertainties are statistical and systematic, respectively. In addition, the parameter associated with the angular distribution for the decay ψ(3686)→Ξ(1530)0Ξ¯(1530)0 is determined to be α=0.32±0.19±0.07, in agreement with theoretical predictions within one standard deviation.
he absolute branching fraction of Λ→pμ−ν¯μ is reported for the first time based on an e+e− annihilation sample of ten billion J/ψ events collected with the BESIII detector at s√=3.097 GeV. The branching fraction is determined to be B(Λ→pμ−ν¯μ)=[1.48±0.21(stat)±0.08(syst)]×10−4, which is a significant improvement in precision over the previous indirect measurements. Combining this result with the world average of B(Λ→pe−ν¯e), we obtain the ratio, Γ(Λ→pμ−ν¯μ)Γ(Λ→pe−ν¯e), to be 0.178±0.028, which agrees with the standard model prediction assuming lepton flavor universality. The asymmetry of the branching fractions of Λ→pμ−ν¯μ and Λ¯→p¯μ+νμ is also determined, and no evidence for CP violation is found.
Though immensely successful, the standard model of particle physics does not offer any explanation as to why our Universe contains so much more matter than antimatter. A key to a dynamically generated matter–antimatter asymmetry is the existence of processes that violate the combined charge conjugation and parity (CP) symmetry1. As such, precision tests of CP symmetry may be used to search for physics beyond the standard model. However, hadrons decay through an interplay of strong and weak processes, quantified in terms of relative phases between the amplitudes. Although previous experiments constructed CP observables that depend on both strong and weak phases, we present an approach where sequential two-body decays of entangled multi-strange baryon–antibaryon pairs provide a separation between these phases. Our method, exploiting spin entanglement between the double-strange Ξ− baryon and its antiparticle2 Ξ¯+
, has enabled a direct determination of the weak-phase difference, (ξP − ξS) = (1.2 ± 3.4 ± 0.8) × 10−2 rad. Furthermore, three independent CP observables can be constructed from our measured parameters. The precision in the estimated parameters for a given data sample size is several orders of magnitude greater than achieved with previous methods3. Finally, we provide an independent measurement of the recently debated Λ decay parameter αΛ (refs. 4,5). The ΛΛ¯
asymmetry is in agreement with and compatible in precision to the most precise previous measurement.
A search for the charged lepton flavor violating decay 𝐽/𝜓→𝑒±𝜏∓ with 𝜏∓→𝜋∓𝜋0𝜈𝜏 is performed with about 10×109 𝐽/𝜓 events collected with the BESIII detector at the BEPCII. No significant signal is observed, and an upper limit is set on the branching fraction ℬ(𝐽/𝜓→𝑒±𝜏∓)<7.5×10−8 at the 90% confidence level. This improves the previously published limit by two orders of magnitude.
Utilizing the data set corresponding to an integrated luminosity of 3.19 fb−1 collected by the BESIII detector at a center-of-mass energy of 4.178 GeV, we perform an amplitude analysis of the D+s→π+π−π+ decay. The sample contains 13,797 candidate events with a signal purity of ∼80%. We use a quasi-model-independent approach to measure the magnitude and phase of the D+s→π+π−π+ decay, where the P and D waves are parameterized by a sum of three Breit-Wigner amplitudes ρ(770)0, ρ(1450)0, and f2(1270). The fit fractions of different decay channels are also reported.
We report new measurements of the branching fraction ℬ(𝐷+𝑠→ℓ+𝜈), where ℓ+ is either 𝜇+ or 𝜏+(→𝜋+¯𝜈𝜏), based on 6.32 fb−1 of electron-positron annihilation data collected by the BESIII experiment at six center-of-mass energy points between 4.178 and 4.226 GeV. Simultaneously floating the 𝐷+𝑠→𝜇+𝜈𝜇 and 𝐷+𝑠→𝜏+𝜈𝜏 components yields ℬ(𝐷+𝑠→𝜏+𝜈𝜏)=(5.21±0.25±0.17)×10−2, ℬ(𝐷+𝑠→𝜇+𝜈𝜇)=(5.35±0.13±0.16)×10−3, and the ratio of decay widths 𝑅=Γ(𝐷+𝑠→𝜏+𝜈𝜏)Γ(𝐷+𝑠→𝜇+𝜈𝜇)=9.73+0.61−0.58±0.36, where the first uncertainties are statistical and the second systematic. No evidence of 𝐶𝑃 asymmetry is observed in the decay rates 𝐷±𝑠→𝜇±𝜈𝜇 and 𝐷±𝑠→𝜏±𝜈𝜏: 𝐴𝐶𝑃(𝜇±𝜈)=(−1.2±2.5±1.0)% and 𝐴𝐶𝑃(𝜏±𝜈)=(+2.9±4.8±1.0)%. Constraining our measurement to the Standard Model expectation of lepton universality (𝑅=9.75), we find the more precise results ℬ(𝐷+𝑠→𝜏+𝜈𝜏)=(5.22±0.10±0.14)×10−2 and 𝐴𝐶𝑃(𝜏±𝜈𝜏)=(−0.1±1.9±1.0)%. Combining our results with inputs external to our analysis, we determine the 𝑐→¯𝑠 quark mixing matrix element, 𝐷+𝑠 decay constant, and ratio of the decay constants to be |𝑉𝑐𝑠|=0.973±0.009±0.014, 𝑓𝐷+𝑠=249.9±2.4±3.5 MeV, and 𝑓𝐷+𝑠/𝑓𝐷+=1.232±0.035, respectively.
The decays D → K−π+π+π− and D → K−π+π 0 are studied in a sample of quantum-correlated DD¯ pairs produced through the process e+e− → ψ(3770) → DD¯, exploiting a data set collected by the BESIII experiment that corresponds to an integrated luminosity of 2.93 fb−1 . Here D indicates a quantum superposition of a D0 and a D¯ 0 meson. By reconstructing one neutral charm meson in a signal decay, and the other in the same or a different final state, observables are measured that contain information on the coherence factors and average strong-phase differences of each of the signal modes. These parameters are critical inputs in the measurement of the angle γ of the Unitarity Triangle in B− → DK− decays at the LHCb and Belle II experiments. The coherence factors are determined to be RK3π = 0.52+0.12−0.10 and RKππ0 = 0.78 ± 0.04, with values for the average strong-phase differences that are δ K3π D = (167+31−19)◦ and δKππ0D = (196+14−15◦ , where the uncertainties include both statistical and systematic contributions. The analysis is re-performed in four bins of the phase-space of the D → K−π+π+π− to yield results that will allow for a more sensitive measurement of γ with this mode, to which the BESIII inputs will contribute an uncertainty of around 6◦.
Ten hadronic final states of the ℎ𝑐 decays are investigated via the process 𝜓(3686)→𝜋0ℎ𝑐, using a data sample of (448.1±2.9)×106 𝜓(3686) events collected with the BESIII detector. The decay channel ℎ𝑐→𝐾+𝐾−𝜋+𝜋−𝜋0 is observed for the first time and has a measured significance of 6.0𝜎. The corresponding branching fraction is determined to be ℬ(ℎ𝑐→𝐾+𝐾−𝜋+𝜋−𝜋0)=(3.3±0.6±0.6)×10−3 (where the uncertainties are statistical and systematic, respectively). Evidence for the decays ℎ𝑐→𝜋+𝜋−𝜋0𝜂 and ℎ𝑐→𝐾0𝑆𝐾±𝜋∓𝜋+𝜋− is found with a significance of 3.6𝜎 and 3.8𝜎, respectively. The corresponding branching fractions (and upper limits) are obtained to be ℬ(ℎ𝑐→𝜋+𝜋−𝜋0𝜂)=(7.2±1.8±1.3)×10−3 (<1.8×10−2) and ℬ(ℎ𝑐→𝐾0𝑆𝐾±𝜋∓𝜋+𝜋−)=(2.8±0.9±0.5)×10−3 (<4.7×10−3). Upper limits on the branching fractions for the final states ℎ𝑐→𝐾+𝐾−𝜋0, 𝐾+𝐾−𝜂, 𝐾+𝐾−𝜋+𝜋−𝜂, 2(𝐾+𝐾−)𝜋0, 𝐾+𝐾−𝜋0𝜂, 𝐾0𝑆𝐾±𝜋∓, and 𝑝¯𝑝𝜋0𝜋0 are determined at a confidence level of 90%.
The Born cross section of the process e+e−→ΛΛ¯ is measured at 33 center-of-mass energies between 3.51 and 4.60 GeV using data corresponding to the total integrated luminosity of 20.0 fb−1 collected with the BESIII detector at the BEPCII collider. Describing the energy dependence of the cross section requires a contribution from the ψ(3770)→ΛΛ¯ decay, which is fitted with a significance of 4.6-4.9σ including the systematic uncertainty. The lower bound on its branching fraction is 2.4×10−6 at the 90% confidence level (C.L.), at least an order of magnitude larger than expected from predictions using a scaling based on observed electronic widths. This result indicates the importance of effects from vector charmonium(-like) states when interpreting data in terms of e.g., electromagnetic structure observables. The data do not allow for definite conclusions on the interplay with other vector charmonium(-like) states, and we set 90% C.L.upper limits for the products of their electronic widths and the branching fractions.