Refine
Year of publication
- 2016 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
- Physik (1)
The phenomenon of magnetism has been known to humankind for at least over 2500 years and many useful applications of magnetism have been developed since then, starting from the compass to modern information storage and processing devices. While technological applications are an important part of the continuing interest in magnetic materials, their fundamental properties are still being studied, leading to new physical insights at the forefront of physics. The magnetism of magnetic materials is a pure quantum effect due to the electrons that carry an intrinsic spin of 1/2. The physics of interacting quantum spins in magnetic insulators is the main subject of this thesis.We focus here on a theoretical description of the antiferromagnetic insulator Cs2CuCl4. This material is highly interesting because it is a nearly ideal realization of the two-dimensional antiferromagnetic spin-1/2 Heisenberg model on an anisotropic triangular lattice, where the Cu(2+) ions carry a spin of 1/2 and the spins interact via exchange couplings. Due to the geometric frustration of the triangular lattice, there exists a spin-liquid phase with fractional excitations (spinons) at finite temperatures in Cs2CuCl4. This spin-liquid phase is characterized by strong short-range spin correlations without long-range order. From an experimental point of view, Cs2CuCl4 is also very interesting because the exchange couplings are relatively weak leading to a saturation field of only B_c=8.5 T. All relevant parts of the phase diagram are therefore experimentally accessible. A recurring theme in this thesis will be the use of bosonic or fermionic representations of the spin operators which each offer in different situations suitable starting points for an approximate treatment of the spin interactions. The methods which we develop in this thesis are not restricted to Cs2CuCl4 but can also be applied to other materials that can be described by the spin-1/2 Heisenberg model on a triangular lattice; one important example is the material class Cs2Cu(Cl{4-x}Br{x}) where chlorine is partially substituted by bromine which changes the strength of the exchange couplings and the degree of frustration.
Our first topic is the finite-temperature spin-liquid phase in Cs2CuCl4. We study this regime by using a Majorana fermion representation of the spin-1/2 operators motivated by theoretical and experimental evidence for fermionic excitations in this spin-liquid phase. Within a mean-field theory for the Majorana fermions, we determine the magnetic field dependence of the critical temperature for the crossover from spin-liquid to paramagnetic behavior and we calculate the specific heat and magnetic susceptibility in zero magnetic field. We find that the Majorana fermions can only propagate in one dimension along the direction of the strongest exchange coupling; this reduction of the effective dimensionality of excitations is known as dimensional reduction.
The second topic is the behavior of ultrasound propagation and attenuation in the spin-liquid phase of Cs2CuCl4, where we consider longitudinal sound waves along the direction of the strongest exchange coupling. Due to the dimensional reduction of the excitations in the spin-liquid phase, we expect that we can describe the ultrasound physics by a one-dimensional Heisenberg model coupled to the lattice degrees of freedom via the exchange-striction mechanism. For this one-dimensional problem we use the Jordan-Wigner transformation to map the spin-1/2 operators to spinless fermions. We treat the fermions within the self-consistent Hartree-Fock approximation and we calculate the change of the sound velocity and attenuation as a function of magnetic field using a perturbative expansion in the spin-phonon couplings. We compare our theoretical results with experimental data from ultrasound experiments, where we find good agreement between theory and experiment.
Our final topic is the behavior of Cs2CuCl4 in high magnetic fields larger than the saturation field B_c=8.5 T. At zero temperature, Cs2CuCl4 is then fully magnetized and the ground state is therefore a ferromagnet where the excitations have an energy gap. The elementary excitations of this ferromagnetic state are spin-flips (magnons) which behave as hard-core bosons. At finite temperatures there will be thermally excited magnons that interact via the hard-core interaction and via additional exchange interactions. We describe the thermodynamic properties of Cs2CuCl4 at finite temperatures and calculate experimentally observable quantities, e.g., magnetic susceptibility and specific heat. Our approach is based on a mapping of the spin-1/2 operators to hard-core bosons, where we treat the hard-core interaction by the self-consistent ladder approximation and the exchange interactions by the self-consistent Hartree-Fock approximation. We find that our theoretical results for the specific heat are in good agreement with the available experimental data.