Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
In dieser Arbeit wurde der chemische Ozonverlust in der arktischen Stratosphäre über elf Jahre hinweg, zwischen 1991 und 2002, mit Hilfe der so genannten "Ozon-Tracer Korrelationstechnik" (TRAC), untersucht. Bei dieser Methode werden Korrelationen zwischen Ozon und langlebigen Spurenstoffen im Verlauf des Winters im Polarwirbels beobachtet und so der jährliche akkumulierte Ozonverlust berechnet. Die Ergebnisse dieser Arbeit basieren im wesentlichen auf Messdaten der Satelliteninstrumente: HALOE (Halogen Occultation Experiment) auf UARS (Upper Atmosphere Research Satellite) und ILAS (Improved Limb Atmospheric Spectrometer) Instrument auf ADEOS (Advanced Earth Observing Satellite). Das HALOE Instrument misst seit Oktober 1991 kontinuierlich alle zwei bis drei Monate für einige Tage in höheren nördlichen Breiten. ILAS lieferte ausschließlich für den Winter 1996-97 Messungen, die über sieben Monate hinweg in hohen Breiten aufgenommen wurden. Aufgrund der eingeführten Erweiterungen und Verbesserungen der Methode in dieser Arbeit, konnte die Methode anhand einer detaillierten Studie für den Winter 1996-97 validiert werden. Die ILAS Messreihe wurde dazu verwendet, erstmals die Untersuchung der zeitlichen Entwicklung von Ozon-Tracer Korrelationen kontinuierlich für die gesamte Lebensdauer des Polarwirbels durchzuführen. Dabei wurden auch Korrelationen während der Bildung des Wirbels untersucht und im Besonderen mögliche Mischungsvorgänge zwischen Wirbelluft und Luftmassen außerhalb des Wirbels. Ausserdem wurde ein Vergleich der Ergebnisse von ILAS und HALOE Messdaten durchgeführt und Unterschiede in den Ergebnissen tiefgreifend analysiert. Basierend auf HALOE Messungen konnte die erweiterte TRAC Methode über elf Jahren hinweg angewendet werden. Damit war erstmals eine konsistente Analyse von Ozonverlust und Chloraktivierung über diesen Zeitraum möglich. Die Erweiterungen führten zu einer Verringerung und genauen Quantifizierung von Unsicherheiten der Ergebnisse. Ein deutlicher Zusammenhang zwischen meteorologischen Bedingungen, Chloraktivierung und dem chemischen Ozonverlust wurde deutlich. Weiterhin zeigte sich eine Abhängigkeit zwischen den meteorologischen Bedingungen und der Homogenität des Ozonverlustes innerhalb eines Winters, sowie der mögliche Einfluss von horizontaler Mischung auf Luftmassen in einem schwach ausgeprägten Polarwirbel. In dieser Arbeit wurde eine positive Korrelation zwischen den über die gesamte Lebensdauer des Wirbels auftretenden möglichen PSC-Flächen und den akkumulierten Ozonverlusten für die elf untersuchten Jahre deutlich. Es konnte darüber hinaus gezeigt werden, dass der Ozonverlust von deutlich mehr Einflüssen als nur von der Fläche möglichen PSC Auftretens bestimmt wird, sondern zum Beispiel von der Stärke der Sonneneinstrahlung abhängt. Außerdem lassen sich Auswirkungen von Vulkanausbrüchen, wie zum Beispiel im Jahr 1991 der des Mount Pinatubo, identifizieren.
Chemical ozone loss in winter 1991–1992 is recalculated based on observations of the HALOE satellite instrument, ER-2 aircraft measurements and balloon data. HALOE satellite observations are shown to be reliable in the lower stratosphere below 400 K, at altitudes where profiles are most likely disturbed by the enhanced sulfate aerosols, as a result of the Mt. Pinatubo eruption in June 1991. Very large chemical ozone loss was observed below 400 K from Kiruna balloon observations between December and March 1992. Additionally, for the two winters after the Mt. Pinatubo eruption, HALOE satellite observations show a stronger extent of chemical ozone loss at lower altitudes compared to other Arctic winter between 1991 and 2003. In stipe of already occurring deactivation of chlorine in March 1992, Mipas-B and LPMA balloon observations indicate still chlorine activation at lower altitudes, consistent with observed chemical ozone loss occurring between February and March and April. Enhanced chemical ozone loss in the Arctic winter 1991–1992 as calculated in earlier studies is corroborated here.
Chemical ozone loss in winter 1991–1992 is recalculated based on observations of the HALOE satellite instrument, Version 19, ER-2 aircraft measurements and balloon data. HALOE satellite observations are shown to be reliable in the lower stratosphere below 400 K, at altitudes where the measurements are most likely disturbed by the enhanced sulfate aerosol loading, as a result of the Mt.~Pinatubo eruption in June 1991. Significant chemical ozone loss (13–17 DU) is observed below 380 K from Kiruna balloon observations and HALOE satellite data between December 1991 and March 1992. For the two winters after the Mt. Pinatubo eruption, HALOE satellite observations show a stronger extent of chemical ozone loss towards lower altitudes compared to other Arctic winters between 1991 and 2003. In spite of already occurring deactivation of chlorine in March 1992, MIPAS-B and LPMA balloon observations indicate that chlorine was still activated at lower altitudes, consistent with observed chemical ozone loss occurring between February and March and April. Large chemical ozone loss of more than 70 DU in the Arctic winter 1991–1992 as calculated in earlier studies is corroborated here.