Refine
Year of publication
- 2021 (3)
Document Type
- Article (2)
- Doctoral Thesis (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Drug discovery and development (1)
- GLUT2 (1)
- GLUT3 (1)
- Membrane proteins (1)
- Virtual screening (1)
- drug screening system (1)
- glucose transport inhibitor (1)
- hxt0 yeast strain (1)
Institute
Human GLUTs represent a family of specialized transporters that facilitate the diffusion of hexoses through membranes along a concentration gradient. The 14 isoforms share high sequence identity but differ in substrate specificity and affinity, and tissue distribution. According to their structure similarity, GLUTs are divided into three classes, with class 1 comprising the most intensively studied isoforms GLUTs1 4. An abnormal function of different GLUT members has been related to the pathogenesis of various diseases, including cancer and diabetes. Hence, GLUTs are the subject of intensive research, and efforts concentrate on identifying GLUT-selective ligands for putative medical purposes and their application in studies aiming to further unravel the metabolic roles of these transporters.
The hexose transporter deficient (hxt0) yeast strain EBY.VW4000 is devoid of all its endogenous hexose transporters and unable to grow on glucose or related hexoses. This strain has proven to be a valuable platform to investigate heterologous transporters due to its easy handling, increased robustness, and versatile applications. However, the functional expression of GLUTs in yeast requires certain modifications. Single point mutations of GLUT1 and GLUT5 led to their functional expression in EBY.VW4000, whereas the native GLUT1 was actively expressed in EBY.S7, a hxt0 strain carrying the fgy1 mutation that putatively reduces the phosphatidylinositol-4-phosphate (PI4P) content in the plasma membrane. GLUT4 was only actively expressed in the hxt0 strain SDY.022, which also contains the fgy1 mutation and in which ERG4 is additionally deleted. Erg4 is one of the late enzymes in the ergosterol pathway, and therefore SDY.022 probably has an altered sterol composition in its membrane.
The goal of this thesis was to actively express GLUT2 and GLUT3 in a hxt0 yeast strain, providing a convenient system for their ligand screening. A PCR-derived amino acid exchange in the sequence of GLUT3 enabled its functional expression in EBY.VW4000 and the unmodified GLUT3 protein was active in EBY.S7. Functional expression of GLUT2 was achieved by rational design. The extracellular loop between the transmembrane regions 1 and 2 is significantly larger in GLUT2 than in other class 1 GLUTs. By truncating this loop by 34 amino acids and exchanging an alanine for a serine, a GLUT3-like loop was implemented. The resulting construct GLUT2∆loopS was functional in EBY.S7. With an additional point mutation in the transmembrane region 11, GLUT2∆loopS_Q455R was also actively expressed in EBY.VW4000. Inhibition studies with the known GLUT inhibitors phloretin and quercetin showed a reduced transporter activity for GLUT2 and GLUT3 in uptake assays and growth tests when inhibitors were present, demonstrating that both systems are amenable for ligand screening experiments.
The newly established GLUT2 yeast system was then used to screen a library of compounds pre-selected by in silico screening. Thereby, eleven identified GLUT2 inhibitors exhibited strong potencies with IC50 values ranging from 0.61 to 19.3 µM. By employing the other yeast systems, these compounds were tested for their effects on GLUT1, and GLUTs3-5, revealing that nine of the identified ligands were GLUT2-selective. In contrast, one was a pan-class 1 inhibitor (inhibiting GLUTs1-4), and one affected GLUT2 and GLUT5, the two fructose transporting isoforms. These compounds will serve as useful tools for investigations on the role of GLUT2 in metabolic diseases and might even evolve into pharmaceutical agents targeting GLUT2-associated diseases.
Due to the beneficial effect of the putatively changed sterol composition in SDY.022 (by ERG4 deletion) on the functional expression of GLUT4, it was hypothesized that the presence of the human sterol cholesterol, or cholesterol-like sterols, might have a beneficial effect on GLUT expression, too. Thus, it was attempted to generate hxt0 strains that synthesize these sterols by genetic modifications targeting the ergosterol pathway. In the scope of these experiments, several strains with different sterol compositions were generated. Drop tests on glucose medium with the different strains expressing GLUT1 or GLUT4 revealed that the deletion of ERG6 is clearly advantageous for a functional expression of GLUT1 (but not GLUT4). This indicates that the methyl group at the ergosterol side chain (introduced by Erg6 and reduced by Erg4) negatively influences GLUT1 activity. However, this effect on GLUT1 activity was less pronounced than the putative altered PI4P content in EBY.S7.
Additionally, in this thesis, a new tool to measure glucose transport rates of transporters expressed in the hxt0 yeast system was developed to facilitate their kinetic characterization. For this, the pH-sensitive GFP variant pHluorin was employed as a biosensor for the cytosolic pH (pHcyt) by measuring the ratio (R390/470) of emission intensities at 512 nm from two different excitation wavelengths (390 and 470 nm). Sugar-starved cells exhibit a slightly acidic pHcyt because ATP production is depleted, reducing the activity of ATP-dependent proton pumps.
...
Human GLUT2 and GLUT3, members of the GLUT / SLC2 gene family, facilitate glucose transport in specific tissues. Their malfunction or misregulation is associated with serious diseases, including diabetes, metabolic syndrome, and cancer. Despite being promising drug targets, GLUTs have only a few specific inhibitors. To identify and characterize potential GLUT2 and GLUT3 ligands, we developed a whole-cell system based on a yeast strain deficient in hexose uptake, whose growth defect on glucose can be rescued by the functional expression of human transporters. The simplicity of handling yeast cells makes this platform convenient for screening potential GLUT2 and GLUT3 inhibitors in a growth-based manner, amenable to high-throughput approaches. Moreover, our expression system is less laborious for detailed kinetic characterization of inhibitors than alternative methods such as the preparation of proteoliposomes or uptake assays in Xenopus oocytes. We show that functional expression of GLUT2 in yeast requires the deletion of the extended extracellular loop connecting transmembrane domains TM1 and TM2, which appears to negatively affect the trafficking of the transporter in the heterologous expression system. Furthermore, single amino acid substitutions at specific positions of the transporter sequence appear to positively affect the functionality of both GLUT2 and GLUT3 in yeast. We show that these variants are sensitive to known inhibitors phloretin and quercetin, demonstrating the potential of our expression systems to significantly accelerate the discovery of compounds that modulate the hexose transport activity of GLUT2 and GLUT3.
Glucose is an essential energy source for cells. In humans, its passive diffusion through the cell membrane is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT2 transports both glucose and fructose with low affinity and plays a critical role in glucose sensing mechanisms. Alterations in the function or expression of GLUT2 are involved in the Fanconi–Bickel syndrome, diabetes, and cancer. Distinguishing GLUT2 transport in tissues where other GLUTs coexist is challenging due to the low affinity of GLUT2 for glucose and fructose and the scarcity of GLUT-specific modulators. By combining in silico ligand screening of an inward-facing conformation model of GLUT2 and glucose uptake assays in a hexose transporter-deficient yeast strain, in which the GLUT1-5 can be expressed individually, we identified eleven new GLUT2 inhibitors (IC50 ranging from 0.61 to 19.3 µM). Among them, nine were GLUT2-selective, one inhibited GLUT1-4 (pan-Class I GLUT inhibitor), and another inhibited GLUT5 only. All these inhibitors dock to the substrate cavity periphery, close to the large cytosolic loop connecting the two transporter halves, outside the substrate-binding site. The GLUT2 inhibitors described here have various applications; GLUT2-specific inhibitors can serve as tools to examine the pathophysiological role of GLUT2 relative to other GLUTs, the pan-Class I GLUT inhibitor can block glucose entry in cancer cells, and the GLUT2/GLUT5 inhibitor can reduce the intestinal absorption of fructose to combat the harmful effects of a high-fructose diet.