Refine
Language
- English (10)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
Institute
Ribosomes translate the genetic code into proteins. Recent technical advances have facilitated in situ structural analyses of ribosome functional states inside eukaryotic cells and the minimal bacterium Mycoplasma. However, such analyses of Gram-negative bacteria are lacking, despite their ribosomes being major antimicrobial drug targets. Here we compare two E. coli strains, a lab E. coli K-12 and human gut isolate E. coli ED1a, for which tetracycline exhibits bacteriostatic and bactericidal action, respectively. The in situ ribosome structures upon tetracycline treatment show a virtually identical drug binding-site in both strains, yet the distribution of ribosomal complexes clearly differs. While K-12 retains ribosomes in a translation competent state, tRNAs are lost in the vast majority of ED1a ribosomes. A differential response is also reflected in proteome-wide abundance and thermal stability assessment. Our study underlines the need to include molecular analyses and to consider gut bacteria when addressing antibiotic mode of action.
Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily1. Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome2,3,4,5,6,7. Earlier studies concluded that FLVCR1 may function as a haem exporter8,9,10,11,12, whereas FLVCR2 was suggested to act as a haem importer13, yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters14,15,16. Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across the plasma membrane, using a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unravelled the coordination chemistry underlying their substrate interactions. Fully conserved tryptophan and tyrosine residues form the binding pocket of both transporters and confer selectivity for choline and ethanolamine through cation–π interactions. Our findings clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhance our comprehension of disease-associated mutations that interfere with these vital processes and shed light on the conformational dynamics of these major facilitator superfamily proteins during the transport cycle.
The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is required for cell entry and is the primary focus for vaccine development. In this study, we combined cryo–electron tomography, subtomogram averaging, and molecular dynamics simulations to structurally analyze S in situ. Compared with the recombinant S, the viral S was more heavily glycosylated and occurred mostly in the closed prefusion conformation. We show that the stalk domain of S contains three hinges, giving the head unexpected orientational freedom. We propose that the hinges allow S to scan the host cell surface, shielded from antibodies by an extensive glycan coat. The structure of native S contributes to our understanding of SARS-CoV-2 infection and potentially to the development of safe vaccines.
Ribosomes catalyze protein synthesis by cycling through various functional states. These states have been extensively characterized in vitro, yet their distribution in actively translating human cells remains elusive. Here, we optimized a cryo-electron tomography-based approach and resolved ribosome structures inside human cells with a local resolution of up to 2.5 angstroms. These structures revealed the distribution of functional states of the elongation cycle, a Z tRNA binding site and the dynamics of ribosome expansion segments. In addition, we visualized structures of Homoharringtonine, a drug for chronic myeloid leukemia treatment, within the active site of the ribosome and found that its binding reshaped the landscape of translation. Overall, our work demonstrates that structural dynamics and drug effects can be assessed at near-atomic detail within human cells.
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is required for cell entry and is the major focus for vaccine development. We combine cryo electron tomography, subtomogram averaging and molecular dynamics simulations to structurally analyze S in situ. Compared to recombinant S, the viral S is more heavily glycosylated and occurs predominantly in a closed pre-fusion conformation. We show that the stalk domain of S contains three hinges that give the globular domain unexpected orientational freedom. We propose that the hinges allow S to scan the host cell surface, shielded from antibodies by an extensive glycan coat. The structure of native S contributes to our understanding of SARS-CoV-2 infection and the development of safe vaccines. The large scale tomography data set of SARS-CoV-2 used for this study is therefore sufficient to resolve structural features to below 5 Ångstrom, and is publicly available at EMPIAR-10453.
Cryo-electron tomography (cryo-ET) is a powerful method to elucidate subcellular architecture and to structurally analyse biomolecules in situ by subtomogram averaging (STA). Specimen thickness is a key factor affecting cryo-ET data quality. Cells that are too thick for transmission imaging can be thinned by cryo-focused-ion-beam (cryo-FIB) milling. However, optimal specimen thickness for cryo-ET on lamellae has not been systematically investigated. Furthermore, the ions used to ablate material can cause damage in the lamellae, thereby reducing STA resolution. Here, we systematically benchmark the resolution depending on lamella thickness and the depth of the particles within the sample. Up to ca. 180 nm, lamella thickness does not negatively impact resolution. This shows that there is no need to generate very thin lamellae and thickness can be chosen such that it captures major cellular features. Furthermore, we show that gallium-ion-induced damage extends to depths of up to 30 nm from either lamella surface.
New drugs are urgently needed to combat the global TB epidemic. Targeting simultaneously multiple respiratory enzyme complexes of Mycobacterium tuberculosis is regarded as one of the most effective treatment options to shorten drug administration regimes, and reduce the opportunity for the emergence of drug resistance. During infection and proliferation, the cytochrome bd oxidase plays a crucial role for mycobacterial pathophysiology by maintaining aerobic respiration at limited oxygen concentrations. Here, we present the cryo-EM structure of the cytochrome bd oxidase from M. tuberculosis at 2.5 Å. In conjunction with atomistic molecular dynamics (MD) simulation studies we discovered a previously unknown MK-9-binding site, as well as a unique disulfide bond within the Q-loop domain that defines an inactive conformation of the canonical quinol oxidation site in Actinobacteria. Our detailed insights into the long-sought atomic framework of the cytochrome bd oxidase from M. tuberculosis will form the basis for the design of highly specific drugs to act on this enzyme.
Human feline leukemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and 2) are members of the major facilitator superfamily1. Their dysfunction is linked to several clinical disorders, including PCARP, HSAN, and Fowler syndrome2–7. Earlier studies concluded that FLVCR1 may function as a putative heme exporter8–12, while FLVCR2 was suggested to act as a heme importer13, yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters14–17. Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across human plasma membranes, utilizing a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unraveled the coordination chemistry underlying their substrate interactions. Within the binding pocket of both transporters, we identify fully conserved tryptophan and tyrosine residues holding a central role in the formation of cation-π interactions, essential for choline and ethanolamine selectivity. Our findings not only clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhancing our comprehension of disease-associated mutations that interfere with these vital processes, but also shed light on the conformational dynamics of these MFS-type proteins during the transport cycle.
Upon infection, human immunodeficiency virus (HIV-1) releases its cone-shaped capsid into the cytoplasm of infected T-cells and macrophages. As its largest known cargo, the capsid enters the nuclear pore complex (NPC), driven by interactions with numerous FG-repeat nucleoporins (FG-Nups). Whether NPCs structurally adapt to capsid passage and whether capsids are modified during passage remains unknown, however. Here, we combined super-resolution and correlative microscopy with cryo electron tomography and molecular simulations to study nuclear entry of HIV-1 capsids in primary human macrophages. We found that cytosolically bound cyclophilin A is stripped off capsids entering the NPC, and the capsid hexagonal lattice remains largely intact inside and beyond the central channel. Strikingly, the NPC scaffold rings frequently crack during capsid passage, consistent with computer simulations indicating the need for NPC widening. The unique cone shape of the HIV-1 capsid facilitates its entry into NPCs and helps to crack their rings.
Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and 2) are major facilitator superfamily transporters from the solute carrier family 49. Dysregulation of these ubiquitous transporters has been linked to various haematological and neurological disorders. While both FLVCRs were initially proposed to hold a physiological function in heme transport, subsequent studies questioned this notion. Here, we used structural, computational and biochemical methods and conclude that these two FLVCRs function as human choline transporters. We present cryo-electron microscopy structures of FLVCRs in different inward- and outward-facing conformations, captured in the apo state or in complex with choline in their translocation pathways. Our findings provide insights into the molecular framework of choline coordination and transport, largely mediated by conserved cation-π interactions, and further illuminate the conformational dynamics of the transport cycle. Moreover, we identified a heme binding site on the protein surface of the FLVCR2 N-domain, and observed that heme actively drives the conformational transitions of the protein. This auxiliary binding site might indicate a potential regulatory role of heme in the FLVCR2 transport mechanisms. Our work resolves the contested substrate specificity of the FLVCRs, and sheds light on the process of maintaining cellular choline homeostasis at the molecular level.