Refine
Document Type
- Article (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Allogeneic (1)
- Anemia management (1)
- Apheresis (1)
- Blood loss calculator (1)
- Blood loss formula (1)
- Blood management (1)
- CD34 + cells (1)
- Cell processing (1)
- G-CSF (1)
- Machine learning (1)
Institute
- Medizin (5)
- Informatik und Mathematik (1)
Background and Objectives: Patient blood (more accurately: haemoglobin, Hb) management (PBM) aims to optimize endogenous Hb production and to minimize iatrogenic Hb loss while maintaining patient safety and optimal effectiveness of medical interventions. PBM was adopted as policy for patients by the World Health Organization (WHO), and, all the more, should be applied to healthy donors. Materials and Methods: Observational data from 489 bone marrow (BM) donors were retrospectively analysed, and principles of patient blood management were applied to healthy volunteer BM donations. Results and Conclusion: We managed to render BM aspiration safe for donors, notably completely avoiding the collection of autologous blood units and blood transfusions through iron management, establishment and curation of high-yield aspiration technique, limitation of collection volume to 1·5% of donor body weight and development of volume prediction algorithms for the requested cell dose.
Background: The ability to approximate intra-operative hemoglobin loss with reasonable precision and linearity is prerequisite for determination of a relevant surgical outcome parameter: This information enables comparison of surgical procedures between different techniques, surgeons or hospitals, and supports anticipation of transfusion needs. Different formulas have been proposed, but none of them were validated for accuracy, precision and linearity against a cohort with precisely measured hemoglobin loss and, possibly for that reason, neither has established itself as gold standard. We sought to identify the minimal dataset needed to generate reasonably precise and accurate hemoglobin loss prediction tools and to derive and validate an estimation formula.
Methods: Routinely available clinical and laboratory data from a cohort of 401 healthy individuals with controlled hemoglobin loss between 29 and 233 g were extracted from medical charts. Supervised learning algorithms were applied to identify a minimal data set and to generate and validate a formula for calculation of hemoglobin loss.
Results: Of the classical supervised learning algorithms applied, the linear and Ridge regression models performed at least as well as the more complex models. Most straightforward to analyze and check for robustness, we proceeded with linear regression. Weight, height, sex and hemoglobin concentration before and on the morning after the intervention were sufficient to generate a formula for estimation of hemoglobin loss. The resulting model yields an outstanding R2 of 53.2% with similar precision throughout the entire range of volumes or donor sizes, thereby meaningfully outperforming previously proposed medical models.
Conclusions: The resulting formula will allow objective benchmarking of surgical blood loss, enabling informed decision making as to the need for pre-operative type-and-cross only vs. reservation of packed red cell units, depending on a patient’s anemia tolerance, and thus contributing to resource management.
Mobilization of hematopoietic stem cells (HSCs) from the bone marrow to the peripheral blood is a complex mechanism that involves adhesive and chemotactic interactions of HSCs as well as their bone marrow microenvironment. In addition to a number of non-genetic factors, genetic susceptibilities also contribute to the mobilization outcome. Identification of genetic factors associated with HSC yield is important to better understand the mechanism behind HSC mobilization. In the present study, we enrolled 148 Korean participants (56 healthy donors and 92 patients) undergoing HSC mobilization for allogeneic or autologous HSC transplantation. Among a total of 53 polymorphisms in 33 candidate genes, one polymorphism (rs11264422) in relaxin/insulin-like family peptide receptor 4 (RXFP4) gene was significantly associated with a higher HSC yield after mobilization in Koreans. However, in a set of 101 Europeans, no association was found between circulating CD34+ cell counts and rs11264422 genotype. Therefore, we suggest that the ethnic differences in subjects’ genetic background may be related to HSC mobilization. In conclusion, the relaxin—relaxin receptor axis may play an important role in HSC mobilization. We believe that the results of the current study could provide new insights for therapies that use relaxin and HSC populations, as well as a better understanding of HSC regulation and mobilization at the molecular level.
Background: Red blood cell (RBC) depletion is a standard graft manipulation technique for ABO-incompatible bone marrow (BM) transplants. The BM processing module for Spectra Optia, “BMC”, was previously introduced. We here report the largest series to date of routine quality data after performing 50 clinical-scale RBC-depletions.
Methods: Fifty successive RBC-depletions from autologous (n = 5) and allogeneic (n = 45) BM transplants were performed with the Spectra Optia BMC apheresis suite. Product quality was assessed before and after processing for volume, RBC and leukocyte content; RBC-depletion and stem cell (CD34+ cells) recovery was calculated there from. Clinical engraftment data were collected from 26/45 allogeneic recipients.
Results: Median RBC removal was 98.2% (range 90.8–99.1%), median CD34+ cell recovery was 93.6%, minimum recovery being 72%, total product volume was reduced to 7.5% (range 4.7–23.0%). Products engrafted with expected probability and kinetics. Performance indicators were stable over time.
Discussion: Spectra Optia BMC is a robust and efficient technology for RBC-depletion and volume reduction of BM, providing near-complete RBC removal and excellent CD34+ cell recovery.
Background: Healthy volunteer registry donors have become the backbone of stem cell transplantation programs. While most registrants will never become actual donors, a small minority are called upon twice, most commonly for the same patient because of poor graft function. Anecdotal evidence provides no hard reasons to disallow second-time mobilized apheresis, but few centers have treated enough two-time donors for definitive conclusions. Moreover, for reasons unknown, the efficiency of G-CSF varies greatly between donations.
Methods: Comparison of outcomes of first vs. second donations can formally confirm G-CSF responsiveness as intrinsically, likely genetically, determined. In our database, we identified 60 donors (1.3%) who received two cycles of G-CSF 24 days to 4 years apart and systematically compared mobilization outcomes.
Results: First and second mobilization and collection proceeded without severe or unusual adverse effects. First-time mobilization efficiency was highly predictive of second-time mobilization. Neither mobilization efficiency nor time lag between donations affected the similarity of first- and second-time mobilization outcomes.
Conclusions: With the caveat that only donors with an unremarkable first donation were cleared for a second, our data indicate that a second donation is feasible, equally tolerable as a first donation, and efficient. Moreover, the data strongly support the notion of donor-intrinsic variables dictating mobilization response and argue against relevant damage to the stem cell compartment during mobilization with rhG-CSF.