Refine
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- CardioMEMS™ HF system (1)
- Depression (1)
- Haemodynamic monitoring (1)
- Health‐related quality of life (1)
- Heart failure (1)
- Morbidity (1)
Institute
- Medizin (3)
Bipolar disorder (BD) is a leading contributor to the global burden of disease1. Despite high heritability (60-80%), the majority of the underlying genetic determinants remain unknown2. We analysed data from participants of European, East Asian, African American and Latino ancestries (n=158,036 BD cases, 2.8 million controls), combining Clinical, Community, and Self-reported samples. We identified 298 genome-wide significant loci in the multi-ancestry meta-analysis, a 4-fold increase over previous findings3, and identified a novel ancestry-specific association in the East Asian cohort. Integrating results from fine-mapping and other variant-to-gene mapping approaches identified 36 credible genes in the aetiology of BD. Genes prioritised through fine-mapping were enriched for ultra-rare damaging missense and protein-truncating variations in BD cases4, highlighting convergence of common and rare variant signals. We report differences in genetic architecture of BD depending on the source of patient ascertainment and on BD-subtype (BDI and BDII). Several analyses implicate specific cell types in BD pathophysiology, including GABAergic interneurons and medium spiny neurons. Together, these analyses provide novel insights into the genetic architecture and biological underpinnings of BD.
Aims: Heart failure (HF) leads to repeat hospitalisations and reduces the duration and quality of life. Pulmonary artery pressure (PAP)‐guided HF management using the CardioMEMS™ HF system was shown to be safe and reduce HF hospitalisation (HFH) rates in New York Heart Association (NYHA) class III patients. However, these findings have not been replicated in health systems outside the United States. Therefore, the CardioMEMS European Monitoring Study for Heart Failure (MEMS‐HF) evaluated the safety, feasibility, and performance of this device in Germany, The Netherlands, and Ireland.
Methods and results: A total of 234 NYHA class III patients (68 ± 11 years, 22% female, ≥1 HFH in the preceding year) from 31 centres were implanted with a CardioMEMS sensor and underwent PAP‐guided HF management. One‐year rates of freedom from device‐ or system‐related complications and from sensor failure (co‐primary outcomes) were 98.3% [95% confidence interval (CI) 95.8–100.0] and 99.6% (95% CI 97.6–100.0), respectively. Survival rate was 86.2%. For the 12 months post‐ vs. pre‐implant, HFHs decreased by 62% (0.60 vs. 1.55 events/patient‐year; hazard ratio 0.38, 95% CI 0.31–0.48; P < 0.0001). After 12 months, mean PAP decreased by 5.1 ± 7.4 mmHg, Kansas City Cardiomyopathy Questionnaire (KCCQ) overall/clinical summary scores increased from 47.0 ± 24.0/51.2 ± 24.8 to 60.5 ± 24.3/62.4 ± 24.1 (P < 0.0001), and the 9‐item Patient Health Questionnaire sum score improved from 8.7 ± 5.9 to 6.3 ± 5.1 (P < 0.0001).
Conclusion: Haemodynamic‐guided HF management proved feasible and safe in the health systems of Germany, The Netherlands, and Ireland. Physician‐directed treatment modifications based on remotely obtained PAP values were associated with fewer HFH, sustainable PAP decreases, marked KCCQ improvements, and remission of depressive symptoms.