Refine
Document Type
- Article (12)
Language
- English (12)
Has Fulltext
- yes (12)
Is part of the Bibliography
- no (12)
Keywords
- Chemical composition (1)
- Demolition emissions (1)
- PM10 (1)
- Size distribution (1)
- Ultrafine particles (1)
- Urban aerosol (1)
- clinical immunology (1)
- immunosuppression (1)
- infection (1)
- lymphocytes (1)
Institute
Atmospheric new particle formation is a general phenomenon observed over coniferous forests. So far nucleation is described as a function of gaseous sulfuric acid concentration only, which is unable to explain the observed seasonality of nucleation events at different measurement sites. Here we introduce a new nucleation parameter including ozone and water vapor concentrations as well as UV-B radiation as a proxy for OH radical formation. Applying this new parameter to field studies conducted at Finnish and German measurement sites it is found capable to predict the occurrence of nucleation events and their seasonal and annual variation indicating a significant role of organics. Extrapolation to possible future conditions of ozone, water vapor and organic concentrations leads to a significant potential increase in nucleation event number.
In this study we report the set-up of a novel twin chamber technique that uses the comparative method and establishes an appropriate connection of atmospheric and laboratory methods to broaden the tools for investigations. It is designed to study the impact of certain parameters and gases on ambient processes, such as particle formation online, and can be applied in a large variety of conditions. The characterisation of both chambers proved that both chambers operate identically, with a residence time xT (COMPASS1) = 26.5 ± 0.3 min and xT (COMPASS2) = 26.6 ± 0.4 min, at a typical flow rate of 15 L min−1 and a gas leak rate of (1.6 ± 0.8) × 10−5 s−1. Particle loss rates were found to be larger (due to the particles' stickiness to the chamber walls), with an extrapolated maximum of 1.8 × 10−3 s−1 at 1 nm, i.e. a hundredfold of the gas leak rate. This latter value is associated with sticky non-volatile gaseous compounds, too. Comparison measurement showed no significant differences. Therefore operation under atmospheric conditions is trustworthy. To indicate the applicability and the benefit of the system, a set of experiments was conducted under different conditions, i.e. urban and remote, enhanced ozone and terpenes as well as reduced sunlight. In order to do so, an ozone lamp was applied to enhance ozone in one of two chambers; the measurement chamber was protected from radiation by a first-aid cover and volatile organic compounds (VOCs) were added using a small additional flow and a temperature-controlled oven. During the elevated ozone period, ambient particle number and volume increased substantially at urban and remote conditions, but by a different intensity. Protection of solar radiation displayed a clear negative effect on particle number, while terpene addition did cause a distinct daily pattern. E.g. adding β pinene particle number concentration rose by 13% maximum at noontime, while no significant effect was observable during darkness. Therefore, the system is a useful tool for investigating local precursors and the details of ambient particle formation at surface locations as well as potential future feedback processes.
Sesquiterpenes (C15H24) are semi-volatile organic compounds emitted by vegetation and are of interest in atmospheric research because they influence the oxidative capacity of the atmosphere and contribute to the formation of secondary organic aerosols. However, little is known about their emission pattern and no established parameterisation is available for global emission models. The aim of this study is to investigate a Central European spruce forest and its emission response to meteorological and environmental parameters, looking for a parameterisation that incorporates heat and oxidative stress as the main driving forces of the induced emissions. Therefore, a healthy ca. 80 yr old Norway spruce (Picea abies) tree was selected and a dynamical vegetation enclosure technique was applied from April to November 2011. The emissions clearly responded to temperature changes with small variations in the β-factor along the year (βspring = 0.09 ± 0.01, βsummer = 0.12 ± 0.02, βautumn = 0.11 ± 0.02). However, daily calculated values revealed a vast amount of variability in temperature dependencies ((0.02 ± 0.002) < β < (0.27 ± 0.04)) with no distinct seasonality.
By separating the complete dataset in 10 different ozone regimes, we found that in moderately or less polluted atmospheric conditions the main driving force of sesquiterpene emissions is the temperature, but when ambient ozone mixing ratios exceed a critical threshold of (36.6 ± 3.9) ppbv, the emissions become primarily correlated with ozone. Considering the complete dataset, cross correlation analysis resulted in highest correlation with ambient ozone mixing ratios (CCO3 = 0.63 ± 0.01; CCT = 0.47 ± 0.02 at t = 0 h for temperature) with a time shift 2–4 h prior to the emissions. An only temperature dependent algorithm was found to substantially underestimate the induced emissions (20% of the measured; R2 = 0.31). However, the addition of an ozone dependent term improved substantially the fitting between measured and modelled emissions (81% of the modelled emissions could be explained by the measurements; R2 = 0.63), providing confidence about the reliability of the suggested parameterisation for the spruce forest site investigated.
Sesquiterpenes (C15H24) are semi-volatile organic compounds emitted by vegetation and are of interest in atmospheric research because they influence the oxidative capacity of the atmosphere and contribute to the formation of secondary organic aerosols. However, little is known about their emission pattern and no established parameterization is available for global emission models. The aim of this study is to investigate a Central European spruce forest and its emission response to meteorological and environmental parameters, looking for a parameterization that incorporates heat and oxidative stress as the main driving forces of the induced emissions. Therefore, a healthy ca. 80 yr old Norway spruce (Picea abies) tree was selected and a dynamical vegetation enclosure technique was applied from April to November 2011. The emissions clearly responded to temperature changes with small variations in the β-factor along the year (βspring=0.09 ± 0.01, βsummer=0.12 ± 0.02, βautumn=0.11 ± 0.02). However, daily calculated values revealed a vast amount of variability in temperature dependencies ((0.02 ± 0.002)< β<(0.27 ± 0.04)) with no distinct seasonality.
By separating the complete dataset in 10 different ozone regimes, we found that in moderately or less polluted atmospheric conditions the main driving force of sesquiterpene emissions is the temperature, but when ambient ozone mixing ratios exceed a~critical threshold of (36.6 ± 3.9) ppbv, the emissions become primarily correlated with ozone. Considering the complete dataset, cross correlation analysis resulted in highest correlation with ambient ozone mixing ratios (CCO3=0.63 ± 0.01; CCT=0.47 ± 0.02 at t=0 h for temperature) with a time shift 2–4 h prior to the emissions. An only temperature dependent algorithm was found to substantially underestimate the induced emissions (20 % of the measured; R2=0.31). However, the addition of an ozone dependent term improved substantially the fitting between measured and modeled emissions (81 % of the measured; R2=0.63), providing confidence about the reliability of the suggested parameterization for the spruce forest site investigated.
The anthropogenic influence on climate and environment has increased strongly since industrialization about 150 yr ago. The consequences for the atmosphere became more and more apparent and nowadays affect our life quality on Earth progressively. Because of that it is very important to understand the atmospheric processes, on which these effects are based on, in detail. In this study we report the set-up of a novel twin chamber technique that uses the comparative method and establishes an appropriate connection of atmospheric and laboratory methods to broaden the tools for investigations. It is designed to study the impact of certain parameters and gases on ambient processes such as particle formation online and can be applied in a large variety of conditions. The characterisation of both chambers proved that both chambers operate identically with a residence time (xT (COMPASS 1) = 26.5 ± 0.3 min and xT (COMPASS 2) = 26.6 ± 0.4 min) at a typical flow rate of 15 L min−1 and a deposition rate (1.6 ± 0.8) × 10−5 s−1. Comparison measurement showed no significant differences. Therefore operation under atmospheric conditions is trustworthy. To indicate the applicability and the benefit of the system a set of experiments was conducted at different conditions, i.e. urban and remote, enhancing ozone and terpenes as well as reducing sunlight. In the ozone enhanced ambient particle number and volume increased substantially at urban and remote conditions in a different strength. Solar radiation displayed a clear positive effect on particle number as well as terpene addition did at remote conditions. Therefore the system is a useful tool to investigate local precursors, the details of ambient particle formation at surface locations as well as future feedback processes.
The link between atmospheric radicals and newly formed particles at a spruce forest site in Germany
(2013)
It has been claimed for more than a century that atmospheric new particle formation is primarily influenced by the presence of sulphuric acid. However, the activation process of sulphuric acid related clusters into detectable particles is still an unresolved topic. In this study we focus on the PARADE campaign measurements conducted during August/September 2011 at Mt. Kleiner Feldberg in central Germany. During this campaign a set of radicals, organic and inorganic compounds and oxidants and aerosol properties were measured or calculated. We compared a range of organic and inorganic nucleation theories, evaluating their ability to simulate measured particle formation rates at 3 nm in diameter (J3) for a variety of different conditions. Nucleation mechanisms involving only sulphuric acid tentatively captured the observed noon-time daily maximum in J3, but displayed an increasing difference to J3 measurements during the rest of the diurnal cycle. Including large organic radicals, i.e. organic peroxy radicals (RO2) deriving from monoterpenes and their oxidation products in the nucleation mechanism improved the correlation between observed and simulated J3. This supports a recently proposed empirical relationship for new particle formation that has been used in global models. However, the best match between theory and measurements for the site of interest was found for an activation process based on large organic peroxy radicals and stabilized Criegee intermediates (sCI). This novel laboratory derived algorithm simulated the daily pattern and intensity of J3 observed in the ambient data. In this algorithm organic derived radicals are involved in activation and growth and link the formation rate of smallest aerosol particles with OH during daytime and NO3 during nighttime. Because of the RO2s lifetime is controlled by HO2 and NO we conclude that peroxy radicals and NO seem to play an important role for ambient radical chemistry not only with respect to oxidation capacity but also for the activation process of new particle formation. This is supposed to have significant impact of atmospheric radical species on aerosol chemistry and should to be taken into account when studying the impact of new particles in climate feedback cycles.
The link between atmospheric radicals and newly formed particles at a spruce forest site in Germany
(2014)
It has been claimed for more than a century that atmospheric new particle formation is primarily influenced by the presence of sulfuric acid. However, the activation process of sulfuric acid related clusters into detectable particles is still an unresolved topic. In this study we focus on the PARADE campaign measurements conducted during August/September 2011 at Mt Kleiner Feldberg in central Germany. During this campaign a set of radicals, organic and inorganic compounds and oxidants and aerosol properties were measured or calculated. We compared a range of organic and inorganic nucleation theories, evaluating their ability to simulate measured particle formation rates at 3 nm in diameter (J3) for a variety of different conditions. Nucleation mechanisms involving only sulfuric acid tentatively captured the observed noon-time daily maximum in J3, but displayed an increasing difference to J3 measurements during the rest of the diurnal cycle. Including large organic radicals, i.e. organic peroxy radicals (RO2) deriving from monoterpenes and their oxidation products, in the nucleation mechanism improved the correlation between observed and simulated J3. This supports a recently proposed empirical relationship for new particle formation that has been used in global models. However, the best match between theory and measurements for the site of interest was found for an activation process based on large organic peroxy radicals and stabilised Criegee intermediates (sCI). This novel laboratory-derived algorithm simulated the daily pattern and intensity of J3 observed in the ambient data. In this algorithm organic derived radicals are involved in activation and growth and link the formation rate of smallest aerosol particles with OH during daytime and NO3 during night-time. Because the RO2 lifetime is controlled by HO2 and NO we conclude that peroxy radicals and NO seem to play an important role for ambient radical chemistry not only with respect to oxidation capacity but also for the activation process of new particle formation. This is supposed to have significant impact of atmospheric radical species on aerosol chemistry and should be taken into account when studying the impact of new particles in climate feedback cycles.
We present a study characterizing aerosol particles resulting from a skyscraper blasting. High mass concentrations with a maximum of 844.9 μg m-3 were present for a short time period of approximately 15 minutes. They result in a day mean of 32.6 μg m-3 compared to a 27.6 μg m-3 background not exceeding the 50 μg m-3 EU maximum permissive value. The increase in particle number concentration was less pronounced with a maximum concentration of 6.9 ⋅ 104 cm-3 compared to the local background value of 1.8 ⋅ 104 cm-3. The size-resolved number concentration shows a single mode of ultrafine particles at approximately 93 nm. The spatial distribution of deposited dust was investigated with Bergerhoff glass collection vessels, showing a decrease with distance. In the deposited dust samples the concentrations of twelve metals was determined, non of them exceeded the regional background concentrations significantly. The chemical composition of individual particles emitted by the demolition was studied by Scanning Electron Microscopy. They were mainly concrete and steel particles, with 60% calcium carbonates, 19% calcium sulfates, 19% silicates and 2% steel. In energy-dispersive X-Ray Spectroscopy, no fibers like asbestos were observed. Using a broad spectrum of instruments and methods, we obtain comprehensive characterization of the particles emitted by the demolition.
Atmospheric new particle formation is a general phenomenon observed over coniferous forests. So far nucleation is either parameterised as a function of gaseous sulphuric acid concentration only, which is unable to explain the observed seasonality of nucleation events at different measurement sites, or as a function of sulphuric acid and organic molecules. Here we introduce different nucleation parameters based on the interaction of sulphuric acid and terpene oxidation products and elucidate the individual importance. They include basic trace gas and meteorological measurements such as ozone and water vapour concentrations, temperature (for terpene emission) and UV B radiation as a proxy for OH radical formation. We apply these new parameters to field studies conducted at conducted at Finnish and German measurement sites and compare these to nucleation observations on a daily and annual scale. General agreement was found, although the specific compounds responsible for the nucleation process remain speculative. This can be interpreted as follows: During cooler seasons the emission of biogenic terpenes and the OH availability limits the new particle formation while towards warmer seasons the ratio of ozone and water vapour concentration seems to dominate the general behaviour. Therefore, organics seem to support ambient nucleation besides sulphuric acid or an OH-related compound. Using these nucleation parameters to extrapolate the current conditions to prognosed future concentrations of ozone, water vapour and organic concentrations leads to a significant potential increase in the nucleation event number.