Refine
Document Type
- Article (5)
- Conference Proceeding (1)
- Preprint (1)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Institute
- Physik (7)
Lattice QCD investigation of a doubly-bottom b̄b̄ud tetraquark with quantum numbers I(JP) = 0(1⁺)
(2019)
We use lattice QCD to investigate the spectrum of the ¯𝑏¯𝑏𝑢𝑑 four-quark system with quantum numbers 𝐼(𝐽𝑃)=0(1+). We use five different gauge-link ensembles with 2+1 flavors of domain-wall fermions, including one at the physical pion mass, and treat the heavy ¯𝑏 quark within the framework of lattice nonrelativistic QCD. Our work improves upon previous similar computations by considering in addition to local four-quark interpolators also nonlocal two-meson interpolators and by performing a Lüscher analysis to extrapolate our results to infinite volume. We obtain a binding energy of (−128±24±10) MeV, corresponding to the mass (10476±24±10) MeV, which confirms the existence of a ¯𝑏¯𝑏𝑢𝑑 tetraquark that is stable with respect to the strong and electromagnetic interactions.
We present first results of a recently started lattice QCD investigation of antiheavy-antiheavy-light-light tetraquark systems including scattering interpolating operators in correlation functions both at the source and at the sink. In particular, we discuss the importance of such scattering interpolating operators for a precise computation of the low-lying energy levels. We focus on the b¯b¯ud four-quark system with quantum numbers I(JP)=0(1+), which has a ground state below the lowest meson-meson threshold. We carry out a scattering analysis using Lüscher's method to extrapolate the binding energy of the corresponding QCD-stable tetraquark to infinite spatial volume. Our calculation uses clover u, d valence quarks and NRQCD b valence quarks on gauge-link ensembles with HISQ sea quarks that were generated by the MILC collaboration.
We present our recent results on antiheavy-antiheavy-light-light tetraquark systems using lattice QCD. Our study of the b¯b¯us four-quark system with quantum numbers JP=1+ and the b¯c¯ud four-quark systems with I(JP)=0(0+) and I(JP)=0(1+) utilizes scattering operators at the sink to improve the extraction of the low-lying energy levels. We found a bound state for b¯b¯us with Ebind,b¯b¯us=(−86±22±10)MeV, but no indication for a bound state in both b¯c¯ud channels. Moreover, we show preliminary results for b¯b¯ud with I(JP)=0(1+), where we used scattering operators both at the sink and the source. We found a bound state and determined its infinite-volume binding energy with a scattering analysis, resulting in Ebind,b¯b¯ud=(−103±8)MeV.
We present our recent results on antiheavy-antiheavy-light-light tetraquark systems using lattice QCD. Our study of the b¯b¯us four-quark system with quantum numbers JP=1+ and the b¯c¯ud four-quark systems with I(JP)=0(0+) and I(JP)=0(1+) utilizes scattering operators at the sink to improve the extraction of the low-lying energy levels. We found a bound state for b¯b¯us with Ebind,b¯b¯us=(−86±22±10)MeV, but no indication for a bound state in both b¯c¯ud channels. Moreover, we show preliminary results for b¯b¯ud with I(JP)=0(1+), where we used scattering operators both at the sink and the source. We found a bound state and determined its infinite-volume binding energy with a scattering analysis, resulting in Ebind,b¯b¯ud=(−103±8)MeV.
In this work we investigate the existence of bound states for doubly heavy tetraquark systems Q¯Q¯′qq′ in a full lattice-QCD computation, where heavy bottom quarks are treated in the framework of non-relativistic QCD. We focus on three systems with quark content b¯b¯ud, b¯b¯us and b¯c¯ud. We show evidence for the existence of b¯b¯ud and b¯b¯us bound states, while no binding appears to be present for b¯c¯ud. For the bound four-quark states we also discuss the importance of various creation operators and give an estimate of the meson-meson and diquark-antidiquark percentages.
We use lattice QCD to investigate the existence of strong-interaction-stable antiheavy-antiheavy-light-light tetraquarks. We study the ¯𝑏¯𝑏𝑢𝑠 system with quantum numbers 𝐽𝑃=1+ as well as the ¯𝑏¯𝑐𝑢𝑑 systems with quantum numbers 𝐼(𝐽𝑃)=0(0+) and 𝐼(𝐽𝑃)=0(1+). We carry out computations on five gauge-link ensembles with 2+1 flavors of domain-wall fermions, including one at the physical pion mass. The bottom quarks are implemented using lattice nonrelativistic QCD, and the charm quarks using an anisotropic clover action. In addition to local diquark-antidiquark and local meson-meson interpolating operators, we include nonlocal meson-meson operators at the sink, which facilitates the reliable determination of the low-lying energy levels. We find clear evidence for the existence of a strong-interaction-stable ¯𝑏¯𝑏𝑢𝑠 tetraquark with binding energy (−86±22±10) MeV and mass (10609±22±10) MeV. For the ¯𝑏¯𝑐𝑢𝑑 systems we do not find any indication for the existence of bound states, but cannot rule out their existence either.
In this work we investigate the existence of bound states for doubly heavy tetraquark systems Q¯Q¯′qq′ in a full lattice-QCD computation, where heavy bottom quarks are treated in the framework of non-relativistic QCD. We focus on three systems with quark content b¯b¯ud, b¯b¯us and b¯c¯ud. We show evidence for the existence of b¯b¯ud and b¯b¯us bound states, while no binding appears to be present for b¯c¯ud. For the bound four-quark states we also discuss the importance of various creation operators and give an estimate of the meson-meson and diquark-antidiquark percentages.