Refine
Document Type
- Working Paper (12)
Language
- English (12)
Has Fulltext
- yes (12)
Is part of the Bibliography
- no (12)
Keywords
- GARCH-Prozess (6)
- GARCH (5)
- Value at Risk (3)
- Volatilität (3)
- ARCH-Prozess (2)
- Börsenkurs (2)
- Conditional Volatility (2)
- Kurtosis (2)
- Multivariate GARCH (2)
- Value-at-Risk (2)
Institute
We develop a multivariate generalization of the Markov–switching GARCH model introduced by Haas, Mittnik, and Paolella (2004b) and derive its fourth–moment structure. An application to international stock markets illustrates the relevance of accounting for volatility regimes from both a statistical and economic perspective, including out–of–sample portfolio selection and computation of Value–at–Risk.
We present a multivariate generalization of the mixed normal GARCH model proposed in Haas, Mittnik, and Paolella (2004a). Issues of parametrization and estimation are discussed. We derive conditions for covariance stationarity and the existence of the fourth moment, and provide expressions for the dynamic correlation structure of the process. These results are also applicable to the single-component multivariate GARCH(p, q) model and simplify the results existing in the literature. In an application to stock returns, we show that the disaggregation of the conditional (co)variance process generated by our model provides substantial intuition, and we highlight a number of findings with potential significance for portfolio selection and further financial applications, such as regime-dependent correlation structures and leverage effects. Klassifikation: C32, C51, G10, G11
Using unobservable conditional variance as measure, latent-variable approaches, such as GARCH and stochastic-volatility models, have traditionally been dominating the empirical finance literature. In recent years, with the availability of high-frequency financial market data modeling realized volatility has become a new and innovative research direction. By constructing "observable" or realized volatility series from intraday transaction data, the use of standard time series models, such as ARFIMA models, have become a promising strategy for modeling and predicting (daily) volatility. In this paper, we show that the residuals of the commonly used time-series models for realized volatility exhibit non-Gaussianity and volatility clustering. We propose extensions to explicitly account for these properties and assess their relevance when modeling and forecasting realized volatility. In an empirical application for S&P500 index futures we show that allowing for time-varying volatility of realized volatility leads to a substantial improvement of the model's fit as well as predictive performance. Furthermore, the distributional assumption for residuals plays a crucial role in density forecasting. Klassifikation: C22, C51, C52, C53
A resampling method based on the bootstrap and a bias-correction step is developed for improving the Value-at-Risk (VaR) forecasting ability of the normal-GARCH model. Compared to the use of more sophisticated GARCH models, the new method is fast, easy to implement, numerically reliable, and, except for having to choose a window length L for the bias-correction step, fully data driven. The results for several different financial asset returns over a long out-of-sample forecasting period, as well as use of simulated data, strongly support use of the new method, and the performance is not sensitive to the choice of L. Klassifizierung: C22, C53, C63, G12
Assumptions about the dynamic and distributional behavior of risk factors are crucial for the construction of optimal portfolios and for risk assessment. Although asset returns are generally characterized by conditionally varying volatilities and fat tails, the normal distribution with constant variance continues to be the standard framework in portfolio management. Here we propose a practical approach to portfolio selection. It takes both the conditionally varying volatility and the fat-tailedness of risk factors explicitly into account, while retaining analytical tractability and ease of implementation. An application to a portfolio of nine German DAX stocks illustrates that the model is strongly favored by the data and that it is practically implementable. Klassifizierung: C13, C32, G11, G14, G18
An asymmetric multivariate generalization of the recently proposed class of normal mixture GARCH models is developed. Issues of parametrization and estimation are discussed. Conditions for covariance stationarity and the existence of the fourth moment are derived, and expressions for the dynamic correlation structure of the process are provided. In an application to stock market returns, it is shown that the disaggregation of the conditional (co)variance process generated by the model provides substantial intuition. Moreover, the model exhibits a strong performance in calculating out–of–sample Value–at–Risk measures.
We show that the use of correlations for modeling dependencies may lead to counterintuitive behavior of risk measures, such as Value-at-Risk (VaR) and Expected Short- fall (ES), when the risk of very rare events is assessed via Monte-Carlo techniques. The phenomenon is demonstrated for mixture models adapted from credit risk analysis as well as for common Poisson-shock models used in reliability theory. An obvious implication of this finding pertains to the analysis of operational risk. The alleged incentive suggested by the New Basel Capital Accord (Basel II), amely decreasing minimum capital requirements by allowing for less than perfect correlation, may not necessarily be attainable.
The use of GARCH models with stable Paretian innovations in financial modeling has been recently suggested in the literature. This class of processes is attractive because it allows for conditional skewness and leptokurtosis of financial returns without ruling out normality. This contribution illustrates their usefulness in predicting the downside risk of financial assets in the context of modeling foreign exchange-rates and demonstrates their superiority over use of normal or Student´s t GARCH models.
While much of classical statistical analysis is based on Gaussian distributional assumptions, statistical modeling with the Laplace distribution has gained importance in many applied fields. This phenomenon is rooted in the fact that, like the Gaussian, the Laplace distribution has many attractive properties. This paper investigates two methods of combining them and their use in modeling and predicting financial risk. Based on 25 daily stock return series, the empirical results indicate that the new models offer a plausible description of the data. They are also shown to be competitive with, or superior to, use of the hyperbolic distribution, which has gained some popularity in asset-return modeling and, in fact, also nests the Gaussian and Laplace. Klassifikation: C16, C50 . March 2005.
Both unconditional mixed-normal distributions and GARCH models with fat-tailed conditional distributions have been employed for modeling financial return data. We consider a mixed-normal distribution coupled with a GARCH-type structure which allows for conditional variance in each of the components as well as dynamic feedback between the components. Special cases and relationships with previously proposed specifications are discussed and stationarity conditions are derived. An empirical application to NASDAQ-index data indicates the appropriateness of the model class and illustrates that the approach can generate a plausible disaggregation of the conditional variance process, in which the components' volatility dynamics have a clearly distinct behavior that is, for example, compatible with the well-known leverage effect. Klassifikation: C22, C51, G10