Refine
Document Type
- Article (8)
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- Cocaine (2)
- 4-FA (1)
- 4-fluoroamphetamine (1)
- Cannabis (1)
- DBH genotype (1)
- DNA methylation (1)
- Drug therapy (1)
- Fuctional connectivity (1)
- Hypertension (1)
- Impulse control (1)
Institute
The dopamine β-hydroxylase (DβH) enzyme transforms dopamine into noradrenaline. We hypothesized that individuals with low activity DBH genotypes (rs1611115 CT/TT) are more sensitive to the influence of cannabis and cocaine on cognitive impulse control and functional connectivity in the limbic ‘reward’ circuit because they experience a drug induced hyperdopaminergic state compared to individuals with high activity DBH genotypes (rs1611115 CC). Regular drug users (N = 122) received acute doses of cannabis (450 μg/kg THC), cocaine HCl 300 mg and placebo. Cognitive impulse control was assessed by means of the Matching Familiar Figures Test (MFFT). Resting state fMRI was measured in a subset of participants to determine functional connectivity between the nucleus accumbens (NAc) and (sub)cortical areas. The influence of cannabis and cocaine on impulsivity and functional connectivity significantly interacted with DBH genotype. Both drugs increased cognitive impulsivity in participants with CT/TT genotypes but not in CC participants. Both drugs also reduced functional connectivity between the NAc and the limbic lobe, prefrontal cortex, striatum and thalamus and primarily in individuals with CT/TT genotypes. Correlational analysis indicated a significant negative association between cognitive impulsivity and functional connectivity in subcortical areas of the brain. It is concluded that interference of cannabis and cocaine with cognitive impulse control and functional corticostriatal connectivity depends on DBH genotype. The present data provide a neural substrate and behavioral mechanism by which drug users can progress to drug seeking and may also offer a rationale for targeted pharmacotherapy in chronic drug users with high risk DBH genotypes.
Background: Prospective memory is the ability to recall intended actions or events at the right time or in the right context. While cannabis is known to impair prospective memory, the acute effect of cocaine is unknown. In addition, it is not clear whether changes in prospective memory represent specific alterations in memory processing or result from more general effects on cognition that spread across multiple domains such as arousal and attention.
Aims: The main objective of the study was, therefore, to determine whether drug-induced changes in prospective memory are memory specific or associated with more general drug-induced changes in attention and arousal.
Methods: A placebo-controlled, three-way, cross-over study including 15 regular poly-drug users was set up to test the influence of oral cocaine (300 mg) and vaporised cannabis (300+150 ‘booster’ µg/kg bodyweight) on an event-based prospective memory task. Attentional performance was assessed using a divided attention task and subjective arousal was assessed with the Profile of Mood States questionnaire.
Results: Results showed that cocaine enhanced prospective memory, attention and arousal. Mean performance of prospective memory and attention, as well as levels of arousal were lowest during treatment with cannabis as compared with placebo and cocaine as evinced by a significantly increased trend across treatment conditions. Prospective memory performance was only weakly positively associated to measures of attention and arousal.
Conclusion: Together, these results indicate that cocaine enhancement of prospective memory performance cannot be fully explained by parallel changes in arousal and attention levels, and is likely to represent a direct change in the neural network underlying prospective memory.
Detection of antihypertensive drugs in biological samples is an important tool to assess the adherence of hypertensive patients. Urine and serum/plasma screenings based on qualitative results may lead to misinterpretations regarding drugs with a prolonged detectability. The aim of the present study was to develop a method that can be used for therapeutic drug monitoring (TDM) of antihypertensive drugs with focus on adherence assessment. Therefore, a method for quantification of four diuretics and four β-blockers using high-performance liquid chromatography-mass spectrometric analysis (LC-MS/MS) of combined acidic and basic serum extracts was developed and validated. The method was applied to 40 serum samples from 20 patients in a supervised medication setting (trough and peak serum samples). Literature data on therapeutic concentration ranges, as well as dose-related drug concentrations (calculated from data of pharmacokinetic studies) were used to evaluate adherence assessment criteria. Concentrations were measured for bisoprolol (n = 9 patients), metoprolol (n = 7), nebivolol (n = 1), canrenone (n = 2, metabolite of spironolactone), hydrochlorothiazide (n = 10) and torasemide (n = 8). The measured concentrations were within the therapeutic reference ranges, except for 24% of the samples (mainly β-blockers). In contrast, all measured concentrations were above the lower dose-related concentration (DRC), which appears superior in evaluating adherence. In conclusion, the quantitative analysis of antihypertensive drugs in serum samples and its evaluation on the basis of the individually calculated lower DRC is a promising tool to differentially assess adherence. This method could possibly detect a lack of adherence or other causes of insufficient therapy more reliably than qualitative methods.
With obesity having doubled in the last decade, hypertension is on the rise. In one-third of hypertensive patients the metabolic syndrome is present. This might be one factor for the increasing number of prescriptions for angiotensin receptor blockers and calcium-channel blockers besides a more favorable risk-to-benefit ratio. The aim of the present study was to evaluate a therapeutic drug monitoring (TDM) method for assessment of adherence based on cut-offs in inpatients and to compare it to an established urine drug screening in outpatients. A method for quantification of calcium-channel blockers and angiotensin receptor blockers using high-performance liquid chromatography-tandem mass spectrometric analysis (LC-MS/MS) was developed and validated. The method was applied to serum samples of 32 patients under supervised medication to establish cut-off values for adherence assessment based on dose-related concentrations (DRC, calculated from pharmacokinetic data). Furthermore, corresponding urine and blood samples of 42 outpatients without supervised medication were analysed and the results compared with regard to adherence assessment. All serum concentrations measured for amlodipine (n = 40), lercanidipine (n = 14), candesartan (n = 10), telmisartan (n = 4) and valsartan (n = 10) in inpatients were above the patient specific lower DRC confirming adherence. Of 42 outpatients the identification of analytes in urine as well as the quantification in serum exhibited differing results. According to urinalysis, adherence was demonstrated in only 87.0% of prescriptions, compared to 91.3% for serum analyses. Differences were observed for amlodipine, lercanidipine and candesartan which can be explained by a higher specificity of the serum analysis approach due to pharmacokinetics. The present study confirms that assessing adherence based on serum drug concentrations with individually calculated lower DRCs is more accurate than using qualitative urine analysis. In particular, drugs with low bioavailability, low renal excretion or high metabolism rate such as lercanidipine and candesartan may lead to underestimation of adherence via urine analysis.
Cerumen was found to be a promising alternative specimen for the detection of drugs. In a pilot study, drugs of abuse were identified at a higher detection rate and a longer detection window in cerumen than in urine. In this study, cerumen from subjects was analyzed after they ingested the designer stimulant 4-fluoroamphetamine (4-FA) in a controlled manner. Methods: Twelve subjects ingested placebo and 100 mg of 4-FA. Five of them were also given 150 mg of 4-FA in 150 mL Royal Club bitter lemon drink at least after 7 days. Cerumen was sampled using cotton swabs at baseline, 1 h after the ingestion of the drug and at the end of the study day (12 h). After extraction with ethyl acetate followed by solid-phase extraction, the extracts were analyzed using liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS). Results and discussion: In the cerumen of all 12 subjects, 4-FA was detected 12 h after its ingestion; in most subjects, cerumen was detected after 1 h of ingestion, ranging from 0.06 to 13.90 (median 1.52) ng per swab. The detection of 4-FA in cerumen sampled 7 days or more after the first dose suggested a long detection window of cerumen. Conclusions: Cerumen can be successfully used to detect a single drug ingestion even immediately after the ingestion when a sufficient amount of cerumen is used.
Ceramides induce important intracellular signaling pathways, modulating proliferation, migration, apoptosis, and inflammation. However, the relevance of the ceramide metabolism in the reconvalescence phase after stroke is unclear. Besides its well-known property as a selective serotonin reuptake inhibitor, fluoxetine has been reported to inhibit the acid sphingomyelinase (ASM), a key regulator of ceramide levels which derives ceramide from sphingomyelin. Furthermore, fluoxetine has shown therapeutic potential in a randomized controlled rehabilitation trial in stroke patients. Our aim was to investigate and modulate ceramide concentrations in the peri-infarct cortex, whose morphological and functional properties correlate with long-term functional outcome in stroke. We show that certain ceramide species are modulated after experimental stroke and that these changes do not result from alterations of ASM activity, but rather from nontranscriptional induction of the ceramide de novo pathway. Unexpectedly, although reducing lesion size, fluoxetine did not improve functional outcome in our model and had no significant influence on ASM activity or the concentration of ceramides. The ceramide metabolism could emerge as a potential therapeutic target in the reconvalescence phase after stroke, as its accumulation in the peri-infarct cortex potentially influences membrane functions as well as signaling events in the tissue essential for neurological recovery.
Availability of novel psychoactive substances (NPS) exponentially increased over the last years. Risk evaluations of NPS are hampered by the lack of pharmacological studies in humans on health parameters. The aim of the present study was to evaluate safety and neurocognitive function of healthy volunteers (N = 12) who received single doses of 100 and 150 mg 4-fluoroamphetamine (4-FA), a phenethylamine that has been associated with severe cardiovascular and cerebrovascular complications. The study was set-up as a placebo controlled, within subject, phase 1 trial as it was the first to administer 4-FA to humans under controlled conditions. Overall, 4-FA produced a strong elevation in blood pressure up until 4-5 h after administration that was followed by a sustained increase in heart rate. After an interim review of safety data from five participants, a decision was taken to cancel administration of 150 mg. We subsequently obtained complete datasets for placebo and 100 mg 4-FA treatments only. Effects of 4-FA on mood and neurocognitive function were most distinct at 1 h post drug and included significant elevations of vigor, friendliness, elation, arousal, positive mood, as well as improvements in attention and motor performance. Negative affect was also reported as time progressed in the acute phase and even more so during the subacute phase. Overall, the influence of 4-FA on vital signs, mood, and neurocognition was similar to that observed with other stimulants. Present findings confirm clinical observations of acute toxicity among 4-FA users and warrant warnings about potential health risks associated with 4-FA use.
Aim: Exposure to opioids has been associated with epigenetic effects. Studies in rodents suggested a role of varying degrees of DNA methylation in the differential regulation of μ-opioid receptor expression across the brain.
Methods: In a translational investigation, using tissue acquired postmortem from 21 brain regions of former opiate addicts, representing a human cohort with chronic opioid exposure, μ-opioid receptor expression was analyzed at the level of DNA methylation, mRNA and protein.
Results & conclusion: While high or low μ-opioid receptor expression significantly correlated with local OPRM1 mRNA levels, there was no corresponding association with OPRM1 methylation status. Additional experiments in human cell lines showed that changes in DNA methylation associated with changes in μ-opioid expression were an order of magnitude greater than differences in brain. Hence, different degrees of DNA methylation associated with chronic opioid exposure are unlikely to exert a major role in the region-specificity of μ-opioid receptor expression in the human brain.