Refine
Year of publication
- 2008 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
- DNA-binding region (1)
- Histone (1)
- Histonmodifikationen (1)
- Milchdrüse (1)
- Milchdrüsengewebe (1)
- STAT5 (1)
- STAT5-DNA Bindungsstellen (1)
- Transkriptionsfaktor (1)
- histone modifications (1)
- mammary gland tissue (1)
Institute
The mammary gland of mice serves as a model system for studying differentiation in an adult animal. With the beginning of pregnancy the mammary epithelial cells undergo functional differentiation to produce milk for nourishment of the young. The transcription factor STAT5 mediates the cytokine-induced induction of the milk proteins during pregnancy and lactation in response to the lactogenic hormone prolactin. In addition to transcription factors that mediate transcription of their target genes by recruitment of the general transcription machinery to the DNA-regulator regions, specific post-translational modifications on the N-terminal tails of histones also influence expression. These histone modifications can affect chromatin structure, which is a main control barrier to transcription, by directly altering accessibility of the chromatin and by providing binding surfaces for protein complexes that can further modulate chromatin structure and regulate transcription. In this work N-terminal histone modification marks that associate with open, permissive and repressed chromatin where investigated in different regions of two milk protein genes during mammary gland development. Using the chromatin-immunoprecipitation (ChIP) assays increased acetylation of histone H3 and H4 at the 5’ region, promoter and transcribed regions of β-casein and whey acidic protein (WAP) gene were observed during pregnancy and lactation when these genes are expressed. The presence of these histone marks, which are associated with a relaxed chromatin structure, correlates with the recruitment of STAT5A and STAT5B to the promoter containing regulatory regions as well as the detection of the phosphorylated RNA polymerase II in the transcribed gene region. Both di- and tri-methylation of histone H3 lysine 4, that mark permissive and active chromatin respectively, were enriched in tissue from pregnant and lactating mice. In comparison tri-methylation of histone H3 lysine 27, a mark associated with repressed chromatin, could be observed during all stages of mammary gland tissue investigated, but appears slightly elevated in the tissue from virgin mice when β-casein and WAP are not expressed. Together these results illustrate that the expression of the two milk proteins genes at distinct stages of mammary gland differentiation correlate with specific changes in histone modifications. In mammary gland tissue STAT5A is important for the mammary gland epithelial cell differentiation and survival during lactation. Yet many genomic target regions that STAT5A actually bind and which are involved in regulation of gene expression during lactation still remain unknown. Therefore, the second part of this thesis was focused on the identification of novel STAT5-binding sites that are differentiation specifically bound by STAT5A in mammary gland tissue during lactation. In summary, the results demonstrate that the ChIP cloning method was employed successfully for the cloning of a STAT5A library and the identification of new STAT5 targets in mammary gland tissue from lactating mice. Nine of the newly identified STAT5-binding targets were verified to differentiation specifically bind STAT5A and STAT5B in vivo during pregnancy and lactation. Even though the selection of the tested clones was biased towards STAT5-binding sites near or at known genes and for multiple STAT5 binding sites, only one out of the nine validated STAT5-binding regions is located in a traditional defined proximal promoter. Except for two STAT5-binding regions, which are located at least 10 kb from the next annotated known gene, six are located in the intronic regions of annotated mRNA or EST transcripts. Three, out of four verified STAT5-binding regions tested in reporter gene assays for functionality, display the ability to drive reporter gene activity in a STAT5 dependent manner. This transcriptional activity is due to the STAT5-binding sites within the cloned regions as determined by mutational analysis. Of special interest is a STAT5-binding region that contains one STAT5 and three STAT-like sites within a 339 bp region that is evolutionary conserved by approximately 80% between the mouse and human genome. This STAT5-binding region lies about 62 kb 5 prime of the nuclear factor I/B gene. The expression of the NFI/B mRNA transcript correlates with the in vivo association of STAT5A to the conserved region during the mammary gland differentiation. Together, these results suggest that this STAT5-binding might be a cis-regulatory region that potentially mediates STAT5 induced NFI/B gene expression in mice during lactation.