Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- DNA integrity (1)
- Sudden Cardiac Death (SCD) (1)
- degradation (1)
- next-generation sequencing (1)
- targeted sequencing (1)
Institute
- Biochemie und Chemie (2)
- Medizin (1)
Over the past years, next-generation sequencing (NGS) technologies revolutionized the possibilities in a broad range of application areas. Also in the field of forensic genetics, NGS continuously gained in importance and attentiveness. A significant number of sudden cardiac deaths (SCD) in the young is due to heritable arrhythmia syndromes emphasizing the need of examining the genetic basis in these cases also with regard to the identification of relatives and/or patients being at risk. As a result, high-throughput methods became of increasing value in molecular autopsy investigations enabling the analysis of a broad spectrum of genes.
Most standard protocols are optimized for high-quality samples and frequently not directly applicable to challenging forensic sample material. In the present study, we intended to examine a comprehensive gene panel associated with SCD and inherited arrhythmogenic disorders. We compared three different hybridization-based library preparation technologies in order to implement a suitable NGS workflow for heterogeneous, forensic as well as diagnostic sample material.
The results obtained indicated, that the Illumina technologies Nextera DNA Flex and TruSeq were compatible with samples exhibiting varying levels of degradation. In comparison, the TruSight method also resulted in good sequencing data, but seemed to be more dependent on DNA integrity. The preparation protocols evaluated in our study are not restricted to molecular autopsy investigations and might be helpful for and transferrable to further forensic research applications.
Strukturelle Analyse des CusCBA-Systems von Escherichia coli Kupfer ist als Kofaktor in vielen Enzymen ein essentielles Spurenelement. Die Aufrechterhaltung der Kupferhomöostase ist für die Zelle enorm wichtig, da es sich um ein redox-aktives Übergangsmetall handelt, das selbst in geringsten Konzentrationen toxisch wirkt. Gewöhnlich ist in der Zelle kein einziges freies Kupferion nachweisbar, da die Zelle redundante Mechanismen für die Detoxifikation von Kupfer besitzt. Ein Mechanismus zur Detoxifikation von Kupfer und Silber in E. coli ist das Cus-System. Es handelt sich um einen vierteiligen Effluxkomplex, der sich aus dem inneren Membranprotein CusA, dem periplasmatischen Membranfusionsprotein CusB und dem TolC ähnlichen äußeren Membranprotein CusC zusammensetzt. Das vierte Protein dieses Systems, CusF, dient im Periplasma als Kupferchaperon. Dieser Komplex ermöglicht das Ausschleusen von Cu(I)- und Ag(I)-Ionen aus dem Cytoplasma über das Periplasma und die äußere Membran in einem einzigen Schritt. In dieser Arbeit sollte die Röntgenstruktur des periplasmatischen Proteins CusB geklärt werden, um anhand struktureller Daten analysieren zu können wie CusA und CusC über CusB miteinander verbunden sind und welche Konformationsänderungen dabei vonstatten gehen. CusB wurde dafür über Ni2+-Chelat-Affinitätschromatographie und Größenausschluss-Chromatographie bis zur Homogenität gereinigt. Das Protein lag in Lösung als Monomer vor. Kristalle von CusB wurden nach der Dampfdiffusionsmethode des hängenden Tropfens hergestellt, wobei Kristalle in nur einem von 500 verschiedenen Ansätzen entstanden sind. Röntgenstreuung wurde bis zu einer Auflösung von 8 Å am ESRF (European Synchrotron Radiation Facility) in Grenoble gemessen. Die Streuung der Kristalle ließ starke Anisotropie und hohe Mosaizität erkennen. Um die Qualität der Kristalle von CusB zu verbessern, wurden Kristalle des Proteins ohne Hexahistidinanhängsel hergestellt. Diese Kristalle zeigten in Röntgenstreuungsexperimenten keine Verbesserung der Auflösung und Qualität. Die Röntgenstrukturen und Analysen durch Protease-Verdau von den zu CusB verwandten Proteinen AcrA und MexA zeigten, dass in diesen die N-Termini und C-Termini unstrukturiert sind. Deswegen wurden zunächst Konstrukte von CusB hergestellt in denen verschieden lange Bereiche des N-Terminus deletiert wurden. Ein Konstrukt von CusB, in dem die ersten 20 Aminosäuren deletiert waren, konnte in 10 von 500 Ansätzen kristallisiert werden. Nach Feinabstimmung der initialen Ansätze wurde für Kristalle dieses Konstrukts eine Auflösung von 5,3 Å am ESRF in Grenoble gemessen. Allerdings wies die Röntgenstreuung ebenfalls ein starke Anisotropie und Mosaizität auf, so dass die Struktur dieses Proteins nicht gelöst werden konnte. Strukturelle Analyse des RNAi-Suppressors B2 des Nodamura Virus: RNAi (RNA-Interferenz) bezeichnet einen sequenzspezifischen RNA-Degradationsprozess, um die Synthese eines Proteins zu verhindern. Zwei RNA-Typen wirken als Auslöser der RNAi: Doppelsträngige RNA dient als Vorläufer von siRNAs (small interfering RNAs), während einzelsträngige RNA mit Stamm-Schleifen-Strukturen als Vorläufer der miRNA (microRNA) dient. SiRNA und miRNA werden durch die Typ III Endonuklease Dicer im Cytoplasma produziert, sind 21-30 Nukleotide lang mit charakteristischen 2-NukleotidÜberhängen am 3’-Ende. Über den Komplex aus Dicer und dem doppelsträngige RNA-bindenden Protein R2D2 werden diese kleinen RNAs an das Protein Argonaute (AGO) abgeben. Dieses baut einen Strang der doppelsträngigen, kleinen RNAs über seine RNAse-Aktivität ab und hält den anderen (Führungs-) Strang gebunden. Daraufhin wird entweder komplementäre mRNA abgebaut oder die Translation komplementärer mRNA verhindert. RNAi dient im Organismus unter anderem der Verteidigung gegen Viren, wobei die Expression viraler Proteine durch RNAi verhindert wird. Durch Koevolution haben Viren allerdings Mechanismen zur Unterdrückung der RNAi in den Wirtszellen entwickelt. Ein RNAi Suppressor ist das Protein B2 des Nodamura Virus (NMV B2). Um Mechanismen und Gemeinsamkeiten der RNAi Suppression durch Viren analysieren zu können, wurde in dieser Arbeit die Röntgenstruktur der RNA bindenden Domäne von NMV B2 gelöst. Hierfür wurde ein Konstrukt (Aminosäuren 1-79) bis zur Homogenität aufgereinigt. Kristalle wurden mit einer Proteinkonzentration von 15 mg/ml mittels der Dampfdiffusions-Methode des hängenden Tropfens hergestellt. Diese wuchsen innerhalb von zwei Tagen als lange Nadeln mit Ausmaßen von 200 x 10 x 10 μm. Bei Messungen am ESRF in Grenoble wurde eine Auflösung bis 2,5 Å erreicht. Das Protein kristallisierte mit einem Dimer pro asymmetrischer Einheit. Die Kristalle wuchsen in der Raumgruppe P212121 mit den Einheitszelldimensionen a = 32.2, b = 56.6, c = 98.6. Die Phase wurde über molekularen Ersatz mit der Struktur des homologen Proteins B2 des Flock House Virus (FHV B2) bestimmt. Die Struktur stellte sich als ein gestrecktes Dimer mit einer Größe von ca. 55 x 10 x 15 Å, bestehend aus drei Alpha-Helices pro Monomer dar. Trotz geringer Sequenzidentität von NMV B2 und FHV B2 zeigten beide Strukturen ein Vier-Helix-Bündel, das von einer sehr kurzen Helix am C-Terminus bedeckt ist. Bei einem Vergleich der RNA-bindenden Aminosäurereste der beiden Strukturen fällt ein hoher Grad an Konservierung auf. Von zehn RNA-interagierenden Resten sind fünf identisch. Die RNA bindenden Reste werden von beiden Monomeren des Dimers beigetragen. So ist wohl mindestens ein Dimer für die RNA-Bindung durch B2 Proteine notwendig.
Mycobacteria contain an outer membrane composed of mycolic acids and a large variety of other lipids. Its protective function is an essential virulence factor of Mycobacterium tuberculosis. Only OmpA, which has numerous homologs in Gram-negative bacteria, is known to form channels in the outer membrane of M. tuberculosis so far. Rv1698 was predicted to be an outer membrane protein of unknown function. Expression of rv1698 restored the sensitivity to ampicillin and chloramphenicol of a Mycobacterium smegmatis mutant lacking the main porin MspA. Uptake experiments showed that Rv1698 partially complemented the permeability defect of the M. smegmatis porin mutant for glucose. These results indicated that Rv1698 provides an unspecific pore that can partially substitute for MspA. Lipid bilayer experiments demonstrated that purified Rv1698 is an integral membrane protein that indeed produces channels. The main single channel conductance is 4.5 +/- 0.3 nanosiemens in 1 M KCl. Zero current potential measurements revealed a weak preference for cations. Whole cell digestion of recombinant M. smegmatis with proteinase K showed that Rv1698 is surface-accessible. Taken together, these experiments demonstrated that Rv1698 is a channel protein that is likely involved in transport processes across the outer membrane of M. tuberculosis. Rv1698 has single homologs of unknown functions in Corynebacterineae and thus represents the first member of a new class of channel proteins specific for mycolic acid-containing outer membranes.