Refine
Year of publication
Language
- English (56)
Has Fulltext
- yes (56)
Is part of the Bibliography
- no (56)
Keywords
- RHIC (2)
- Charged-particle multiplicity (1)
- Charmonia (1)
- Cold nuclear matter effects (1)
- Collectivity (1)
- Correlation (1)
- Di-hadron correlations (1)
- Diffraction (1)
- Elastic scattering (1)
- Flow (1)
Institute
We report on the measurements of directed flow v1 and elliptic flow v2 for hadrons (π±, K ±, K0 S , p, φ, Λ and ) from Au+Au collisions at √sN N = 3 GeV and v2 for (π±, K ±, p and p) at 27 and 54.4 GeV with the STAR experiment. While at the two higher energy midcentral collisions the numberof-constituent-quark (NCQ) scaling holds, at 3 GeV the v2 at midrapidity is negative for all hadrons and the NCQ scaling is absent. In addition, the v1 slopes at midrapidity for almost all observed hadrons are found to be positive, implying dominant repulsive baryonic interactions. The features of negative v2 and positive v1 slope at 3 GeV can be reproduced with a baryonic mean-field in transport model calculations. These results imply that the medium in such collisions is likely characterized by baryonic interactions.
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in √sNN = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in √sNN = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
Fluctuations of conserved quantities such as baryon number, charge, and strangeness are sensitive to the correlation length of the hot and dense matter created in relativistic heavy-ion collisions and can be used to search for the QCD critical point. We report the first measurements of the moments of net-kaon multiplicity distributions in Au+Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV. The collision centrality and energy dependence of the mean (M), variance (σ 2), skewness (S), and kurtosis (κ) for net-kaon multiplicity distributions as well as the ratio σ 2/M and the products Sσ and κσ 2 are presented. Comparisons are made with Poisson and negative binomial baseline calculations as well as with UrQMD, a transport model (UrQMD) that does not include effects from the QCD critical point. Within current uncertainties, the net-kaon cumulant ratios appear to be monotonic as a function of collision energy.
We present three-particle mixed-harmonic correlations 〈cos(mφa + nφb − (m + n)φc )〉 for harmonics m, n = 1 − 3 for charged particles in √sN N = 200 GeV Au+Au collisions at RHIC. These measurements provide information on the three-dimensional structure of the initial collision zone and are important for constraining models of a subsequent low-viscosity quark–gluon plasma expansion phase. We investigate correlations between the first, second and third harmonics predicted as a consequence of fluctuations in the initial state. The dependence of the correlations on the pseudorapidity separation between particles show hints of a breaking of longitudinal invariance. We compare our results to a number of state-of-the art hydrodynamic calculations with different initial states and temperature dependent viscosities. These measurements provide important steps towards constraining the temperature dependent viscosity and longitudinal structure of the initial state at RHIC.
New measurements of directed flow for charged hadrons, characterized by the Fourier coefficient v1, are presented for transverse momenta pT, and centrality intervals in Au+Au collisions recorded by the STAR experiment for the center-of-mass energy range √sN N = 7.7–200 GeV. The measurements underscore the importance of momentum conservation, and the characteristic dependencies on √sN N , centrality and pT are consistent with the expectations of geometric fluctuations generated in the initial stages of the collision, acting in concert with a hydrodynamic-like expansion. The centrality and pT dependencies of veven 1 , as well as an observed similarity between its excitation function and that for v3, could serve as constraints for initial-state models. The veven 1 excitation function could also provide an important supplement to the flow measurements employed for precision extraction of the temperature dependence of the specific shear viscosity.
We report the first multi-differential measurements of strange hadrons of K −, φ and − yields as well as the ratios of φ/K − and φ/− in Au+Au collisions at √sNN = 3 GeV with the STAR experiment fixed target configuration at RHIC. The φ mesons and − hyperons are measured through hadronic decay channels, φ → K + K − and Ξ− → Λπ−. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The 4π yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the φ/K − and φ/− ratios while the result of canonical ensemble (CE) calculations reproduce φ/K −, with the correlation length rc ∼ 2.7 fm, and φ/−, rc ∼ 4.2 fm, for the 0-10% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at 3 GeV implies a rather different medium property at high baryon density.
We report inclusive photon measurements about midrapidity ( |y| <0.5 ) from 197 Au + 197 Au collisions at sqrt[sNN ]=130 GeV at RHIC. Photon pair conversions were reconstructed from electron and positron tracks measured with the Time Projection Chamber (TPC) of the STAR experiment. With this method, an energy resolution of Delta E/E ~ 2% at 0.5 GeV has been achieved. Reconstructed photons have also been used to measure the transverse momentum ( pt ) spectra of pi 0 mesons about midrapidity ( |y| <1 ) via the pi 0 --> gamma gamma decay channel. The fractional contribution of the pi 0 --> gamma gamma decay to the inclusive photon spectrum decreases by 20%±5% between pt =1.65 GeV/c and pt =2.4 GeV/c in the most central events, indicating that relative to pi 0 --> gamma gamma decay the contribution of other photon sources is substantially increasing.
We report on the rapidity and centrality dependence of proton and antiproton transverse mass distributions from 197Au + 197Au collisions at sqrt[sNN ]=130 GeV as measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). Our results are from the rapidity and transverse momentum range of |y| <0.5 and 0.35< pt <1.00 GeV/c . For both protons and antiprotons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y| <0.5 . Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton (antiproton) yields and transverse mass distributions the possibility of prehadronic collective expansion may have to be taken into account.
We present the first large-acceptance measurement of event-wise mean transverse momentum <pt> fluctuations for Au-Au collisions at nucleon-nucleon center-of-momentum collision energy sqrt[sNN] = 130 GeV. The observed nonstatistical <pt> fluctuations substantially exceed in magnitude fluctuations expected from the finite number of particles produced in a typical collision. The r.m.s. fractional width excess of the event-wise <pt> distribution is 13.7±0.1(stat) ±1.3(syst)% relative to a statistical reference, for the 15% most-central collisions and for charged hadrons within pseudorapidity range | eta |<1,2 pi azimuth, and 0.15 <= pt <= 2 GeV/c. The width excess varies smoothly but nonmonotonically with collision centrality and does not display rapid changes with centrality which might indicate the presence of critical fluctuations. The reported <pt> fluctuation excess is qualitatively larger than those observed at lower energies and differs markedly from theoretical expectations. Contributions to <pt> fluctuations from semihard parton scattering in the initial state and dissipation in the bulk colored medium are discussed.
We present STAR measurements of the azimuthal anisotropy parameter v2 and the binary-collision scaled centrality ratio RCP for kaons and lambdas ( Lambda + Lambda -bar) at midrapidity in Au+Au collisions at sqrt[sNN]=200 GeV. In combination, the v2 and RCP particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish pT ~ 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K0S and Lambda + Lambda -bar v2 values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination.