### Refine

#### Language

- English (5)

#### Has Fulltext

- yes (5)

#### Is part of the Bibliography

- no (5)

#### Keywords

- Meson (2)
- Neutronenstern (2)
- Quark (2)
- meson (2)
- neutron star (2)
- quark (2)
- Materie (1)
- QMC (1)
- SHM (1)
- SU (3) Modell (1)

#### Institute

- Physik (5)

We investigate various properties of neutron star matter within an e ective chiral SU(3)L × SU(3)R model. The predictions of this model are compared with a Walecka-type model. It is demonstrated that the importance of hy- peron degrees are strongly depending on the interaction used, even if the equation of state near saturation density is nearly the same in both models. While the Walecka-type model predicts a strange star core with strangeness fraction fS 4/3, the chiral model allows only for fS 1/3 and predicts that 0, + and 0 will not exist in star, in contrast to the Walecka-type model. PACS: 26.60+c, 21.65+f, 24.10Jv

Hot hypernuclear matter is investigated in an explicit SU(3) quark model based on a mean field description of nonoverlapping baryon bags bound by the self-consistent exchange of scalar sigma, zeta and vector omega,phi mesons. The sigma, omega mean fields are assumed to couple to the u, d-quarks while the zeta ,phi mean fields are coupled to the s-quark. The coupling constants of the mean fields with the quarks are assumed to satisfy SU(6) symmetry. The calculations take into account the medium dependence of the bag parameter on the scalar fields sigma, zeta. We consider only the octet baryons N,Lambda,Sigma, Xi in hypernuclear matter. An ideal gas of the strange mesons K and K is introduced to keep zero net strangeness density. Our results for symmetric hypernuclear matter show that a phase transition takes place at a critical temperature around 180 MeV in which the scalar mean fields sigma, zeta take nonzero values at zero baryon density. Furthermore, the bag contants of the baryons decrease significantly at and above this critical temperature indicating the onset of quark deconfinement. The present results imply that the onset of quark deconfinement in SU(3) hypernuclear matter is much stronger than in SU(2) nuclear matter. PACS:21.65.+f, 24.85.+p, 12.39Ba

We investigate in stable strange hadronic matter (SHM) the modifica- tion of the masses of the scalar (sigma,sigma') and the vector (omega,phi) mesons. The baryon ground state is treated in the relativistic Hartree approximation in the nonlinear sigma-omega and linear sigma'- phi model. In stable SHM, the masses of all the mesons reveal considerable reduction due to large vacuum polarization contribution from the hyperons and small density dependent effects caused by larger binding. PACS: 21.65+f, 24.10Jv

The effects of internal quark structure of baryons on the composition and structure of neutron star matter with hyperons are investigated in the quark- meson coupling (QMC) model. The QMC model is based on mean-field description of nonoverlapping spherical bags bound by self-consistent exchange of scalar and vector mesons. The predictions of this model are compared with quantum hadrodynamic (QHD) model calibrated to reproduce identical nuclear matter saturation properties. By employing a density dependent bag constant through direct coupling to the scalar field, the QMC model is found to exhibit identical properties as QHD near saturation density. Furthermore, this modified QMC model provides well-behaved and continuous solutions at high densities relevant to the core of neutron stars. Two additional strange mesons are introduced which couple only to the strange quark in the QMC model and to the hyperons in the QHD model. The constitution and structure of stars with hyperons in the QMC and QHD models reveal interesting di erences. This suggests the importance of quark structure e ects in the baryons at high densities. PACS number(s): 26.60.+c, 21.65.+f, 12.39.Ba, 24.85.+p

Hadron production and their suppression in Pb+Pb collisions at LHC at a center-of-mass energy of sNN=2.76 TeV are studied within a multiphase transport (AMPT) model whose initial conditions are obtained from the recently updated HIJING 2.0 model. The centrality dependence of charged hadron multiplicity dNch/dη at midrapidity was found quite sensitive to the largely uncertain gluon shadowing parameter sg that determines the nuclear modification of the gluon distribution. We find final-state parton scatterings reduce considerably hadron yield at midrapidity and enforces a smaller gluon shadowing to be consistent with dNch/dη data at LHC. With such a constrained parton shadowing, charged hadron and neutral pion production over a wide transverse momenta range are investigated in AMPT. Relative to nucleon–nucleon collisions, the particle yield in central heavy ion collisions is suppressed due to parton energy loss. While the calculated magnitude and pattern of suppression is found consistent with that measured in Au+Au collisions at sNN=0.2 TeV at RHIC, at the LHC energy the suppression is overpredicted which may imply the medium formed at LHC is less opaque than expected from simple RHIC extrapolations. Reduction of the QCD coupling constant αs by ∼30% in the higher temperature plasma formed at LHC as compared to that at RHIC was found to reproduce the measured suppression at LHC.