Refine
Year of publication
- 2016 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
The development of the atrioventricular (AV) canal and the cardiac valves is tightly linked and a critically regulated process. Anomalies in components of the involved pathways can lead to congenital valve malformations, a leading cause of morbidity and mortality in neonates. Myocardial Bmp as well as endocardial Notch and Wnt signaling have been identified as critical factors for the induction of EMT during the formation of the endocardial cushions and cardiac valves. Of these, canonical Wnt signaling positively regulates endocardial proliferation and EMT but negatively regulates endocardial differentiation. Further, elevated Wnt signaling leads to the ectopic expression of myocardial Bmp ligands suggesting a high level of integration of the involved pathways and crosstalk amongst the different cardiac tissues.
Here we have identified a novel role for Id4 as a mediator between Bmp and Wnt signaling. Id4 belongs to the Id family of proteins and is known to be involved in bone and nervous system development. We found that in zebrafish, id4 is expressed in the endocardium of the AV canal at embryonic stages and throughout the atrial chamber in addition to AV canal, in adults. Using transcription activator-like effector nucleases (TALENs) we established an id4 mutant allele. Our analysis shows that id4 mutant larvae are susceptible to retrograde blood flow, and show aberrant expression of developmental valvular markers. These include expanded expression domains of markers like bmp4, cspg2a and Alcam. In contrast, valve maturation as assessed by the expression of spp1 is considerably reduced in id4 mutants. Using conditional transgenic systems, along with elegant in vivo imaging of transgenic reporter lines, we further found that id4 is a transcriptional target of Bmp signaling, and it is capable of dose dependently restricting Wnt signaling in the endocardium of the Atrioventricular Canal.
Taken together, our data identifies Id4 as a novel player in Atrioventricular Canal and valve development. We show that Id4 function is important in valve development acting downstream of Bmp signaling by restricting endocardial Wnt to allow valve maturation