Refine
Document Type
- Article (8)
- Diploma Thesis (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- magnetic compass (2)
- Activated Cry1a (1)
- Cryptochrome 1a (1)
- Flavin cycle (1)
- Magnetic compass (1)
- Photoreduction (1)
- Radical pair mechanisms (1)
- asymmetry (1)
- conformational change (1)
- cryptochrome 1a (1)
Institute
- Biowissenschaften (10)
Cryptochromes are a ubiquitous group of blue-light absorbing flavoproteins that in the mammalian retina have an important role in the circadian clock. In birds, cryptochrome 1a (Cry1a), localized in the UV/violet-sensitive S1 cone photoreceptors, is proposed to be the retinal receptor molecule of the light-dependent magnetic compass. The retinal localization of mammalian Cry1, homologue to avian Cry1a, is unknown and it is open whether mammalian Cry1 is also involved in magnetic field sensing. To constrain the possible role of retinal Cry1, we immunohistochemically analysed 90 mammalian species across 48 families in 16 orders, using an antiserum against the Cry1 C-terminus that in birds labels only the photo-activated conformation. In the Carnivora families Canidae, Mustelidae and Ursidae and in some Primates, Cry1 was consistently labeled in the outer segment of the shortwave-sensitive S1 cones. This finding would be compatible with a magnetoreceptive function of Cry1 in these taxa. In all other taxa, Cry1 was not detected by the antiserum that likely also in mammals labels the photo-activated conformation, although Western blots showed Cry1 in mouse retinal cell nuclei. We speculate that in the mouse and the other negative-tested mammals Cry1 is involved in circadian functions as a non-light-responsive protein.
Correction to: Scientific Reports https://doi.org/10.1038/srep21848, published online 22 February 2016
This Article contains an error. Among the studied species, the orangutan was erroneously specified as Bornean orangutan Pongo pygmaeus. In fact, the studied individual was a Sumatran orangutan Pongo abelii.
Wie andere Vögel auch, verfügen Hühner über zwei verschiedene Magnetfeldrezeptoren. In der vorliegenden Arbeit werden diese beiden Rezeptoren, vor allem unter dem Aspekt Verhaltensontogenie eingehender untersucht. Meine Ergebnisse werden durch histologische Untersuchungen gestützt. Ich untersuchte zwei Hühnerrassen, einen braunen und einen weißen Legehuhn Stamm. Mit der Standardmethode konnte ich die Befunde der Literatur bestätigen. Zur Untersuchung des Magnetkompasses im Auge, habe ich Hühner darauf trainiert einen roten Tischtennisball, auf den sie geprägt wurden, in einer bestimmten magnetischen Richtung zu suchen. Im unbelohnten“ Test ist das Magnetfeld um 90 Grad gedreht, so dass der magnetische Norden nun im geographischen Osten liegt. Die braunen Hühner benutzen den Magnetkompass zum Lösen der gestellten Aufgabe, die weißen Hühner wählen zufällig eine Richtung. Eine Veränderung der Trainingsmethode, ein Training im gedrehten Magnetfeld und eine „Bestrafung“, haben das Ergebnis verändert. Die weißen Hühner sind nun in der Lage, die magnetisch richtige Richtung zu finden, die braunen Hühner reagieren verängstigt und wählen nur zufällig eine Richtung. Beide Hühnerrassen können also - unter verschiedenen Voraussetzungen - einen magnetischen Kompass für die Orientierung benutzen.
Die vorliegende Arbeit umfasst die Rekonstruktion der Körpermasse pleistozäner Cerviden in Java. Zunächst wird ein Rezentmodell erstellt, das den Zusammenhang zwischen Körpermasse und dem jeweiligen Messparameter aufzeigt. Die daraus resultierenden Regressionsgleichungen werden für die Rekonstruktion verwendet. Das fossile dentale und postcraniale Material wird vermessen und die Körpermasse für jedes einzelne Stück rekonstruiert. Die absoluten Werte werden in Körpermassenklassen eingeteilt, um einen Wert unabhängig vom physiologischen Zustand zu erhalten. Die Körpermassen werden, soweit möglich, getrennt nach Gattungen rekonstruiert. Ein Vergleich zeigt, dass es deutliche Unterschiede in der Körpermasse der Gattungen Axis und Muntiacus im Vergleich zu Cervus gibt. Bei der Einteilung in Klassen fällt auf, dass die Klassen 3a (10 kg bis 20 kg) und 3b (20 kg bis 50 kg) ausschließlich von Axis und zu einem kleinen Teil von Muntiacus besetzt werden. Die Klassen 4a und 4b ausschließlich von Cervus. Die einzige von Axis und Cervus besetzte Klasse ist 3c (50 kg bis 100 kg). Anhand dieser aus den Fossilien der Dubois Sammlung gewonnenen Erkenntnisse können nun die Fossilien der von Koenigswald Sammlung beurteilt werden, da diese nicht auf Gattungsniveau bestimmt sind. In beiden Sammlungen liegt der höchste Prozentsatz in der Klasse 3b. Daraus kann man schließen, dass sehr viele Tiere der Gattung Axis vorhanden sind. Die Gattung Cervus hingegen ist nur zu einem recht geringen Prozentsatz vertreten. Diese Verteilung spiegelt sich auch in der Untersuchung der Fundstellen wider. An nur drei der acht untersuchten Fundstellen wurden Tiere der Gattung Cervus gefunden. Ein Vergleich der Körpermassen ergibt keinen signifikanten Unterschied zwischen diesen. Innerhalb der Axis-Hirsche kann man einen Körpermassenunterschied erkennen, der jedoch nicht mit der geographischen Lage der Fundstellen begründet werden kann. Die Untersuchung der Fundstellen aufgrund ihrer Chronologie ergibt keinen signifikanten Unterschied zwischen den Faunenleveln Trinil H.K. und Kedung Brubus. Jedoch ist innerhalb der Faunenlevel eine deutliche Variationsbreite der Körpermasse zu erkennen, welche auf das an den einzelnen Fundstellen herrschende Habitat zurückgeführt werden kann. Die Zuordnung der bisher nicht datierten Fundstellen in die Faunenlevel ist alleine aufgrund der rekonstruierten Körpermassen nicht möglich, jedoch können erste Aussagen über das umgebende Habitat getroffen werden.
Background: European robins, Erithacus rubecula, show two types of directional responses to the magnetic field: (1) compass orientation that is based on radical pair processes and lateralized in favor of the right eye and (2) so-called 'fixed direction' responses that originate in the magnetite-based receptors in the upper beak. Both responses are light-dependent. Lateralization of the 'fixed direction' responses would suggest an interaction between the two magnetoreception systems. Results: Robins were tested with either the right or the left eye covered or with both eyes uncovered for their orientation under different light conditions. With 502 nm turquoise light, the birds showed normal compass orientation, whereas they displayed an easterly 'fixed direction' response under a combination of 502 nm turquoise with 590 nm yellow light. Monocularly right-eyed birds with their left eye covered were oriented just as they were binocularly as controls: under turquoise in their northerly migratory direction, under turquoise-and-yellow towards east. The response of monocularly left-eyed birds differed: under turquoise light, they were disoriented, reflecting a lateralization of the magnetic compass system in favor of the right eye, whereas they continued to head eastward under turquoise-and-yellow light. Conclusion: 'Fixed direction' responses are not lateralized. Hence the interactions between the magnetite-receptors in the beak and the visual system do not seem to involve the magnetoreception system based on radical pair processes, but rather other, non-lateralized components of the visual system.
Cryptochrome 1a, located in the UV/violet-sensitive cones in the avian retina, is discussed as receptor molecule for the magnetic compass of birds. Our previous immunohistochemical studies of chicken retinae with an antiserum that labelled only activated cryptochrome 1a had shown activation of cryptochrome 1a under 373 nm UV, 424 nm blue, 502 nm turquoise and 565 nm green light. Green light, however, does not allow the first step of photoreduction of oxidized cryptochromes to the semiquinone. As the chickens had been kept under ‘white’ light before, we suggested that there was a supply of the semiquinone present at the beginning of the exposure to green light, which could be further reduced and then re-oxidized. To test this hypothesis, we exposed chickens to various wavelengths (1) for 30 min after being kept in daylight, (2) for 30 min after a 30 min pre-exposure to total darkness, and (3) for 1 h after being kept in daylight. In the first case, we found activated cryptochrome 1a under UV, blue, turquoise and green light; in the second two cases we found activated cryptochrome 1a only under UV to turquoise light, where the complete redox cycle of cryptochrome can run, but not under green light. This observation is in agreement with the hypothesis that activated cryptochrome 1a is found as long as there is some of the semiquinone left, but not when the supply is depleted. It supports the idea that the crucial radical pair for magnetoreception is generated during re-oxidation.
Background: The Radical-Pair-Model postulates that the reception of magnetic compass directions in birds is based on spin-chemical reactions in specialized photopigments in the eye, with cryptochromes discussed as candidate molecules. But so far, the exact subcellular characterization of these molecules in the retina remained unknown. Methodology/Principal Findings: We here describe the localization of cryptochrome 1a (Cry1a) in the retina of European robins, Erithacus rubecula, and domestic chickens, Gallus gallus, two species that have been shown to use the magnetic field for compass orientation. In both species, Cry1a is present exclusively in the ultraviolet/violet (UV/V) cones that are distributed across the entire retina. Electron microscopy shows Cry1a in ordered bands along the membrane discs of the outer segment, and cell fractionation reveals Cry1a in the membrane fraction, suggesting the possibility that Cry1a is anchored along membranes. Conclusions/Significance: We provide first structural evidence that Cry1a occurs within a sensory structure arranged in a way that fulfils essential requirements of the Radical-Pair-Model. Our findings, identifying the UV/V-cones as probable magnetoreceptors, support the assumption that Cry1a is indeed the receptor molecule mediating information on magnetic directions, and thus provide the Radical-Pair-Model with a profound histological background.
The radical pair model proposes that the avian magnetic compass is based on radical pair processes in the eye, with cryptochrome, a flavoprotein, suggested as receptor molecule. Cryptochrome 1a (Cry1a) is localized at the discs of the outer segments of the UV/violet cones of European robins and chickens. Here, we show the activation characteristics of a bird cryptochrome in vivo under natural conditions. We exposed chickens for 30 min to different light regimes and analysed the amount of Cry1a labelled with an antiserum against an epitope at the C-terminus of this protein. The staining after exposure to sunlight and to darkness indicated that the antiserum labels only an illuminated, activated form of Cry1a. Exposure to narrow-bandwidth lights of various wavelengths revealed activated Cry1a at UV, blue and turquoise light. With green and yellow, the amount of activated Cry1a was reduced, and with red, as in the dark, no activated Cry1a was labelled. Activated Cry1a is thus found at all those wavelengths at which birds can orient using their magnetic inclination compass, supporting the role of Cry1a as receptor molecule. The observation that activated Cry1a and well-oriented behaviour occur at 565 nm green light, a wavelength not absorbed by the fully oxidized form of cryptochrome, suggests that a state other than the previously suggested Trp/FAD radical pair formed during photoreduction is crucial for detecting magnetic directions.
The magnetic compass of a migratory bird, the European robin (Erithacus rubecula), was shown to be lateralized in favour of the right eye/left brain hemisphere. However, this seems to be a property of the avian magnetic compass that is not present from the beginning, but develops only as the birds grow older. During first migration in autumn, juvenile robins can orient by their magnetic compass with their right as well as with their left eye. In the following spring, however, the magnetic compass is already lateralized, but this lateralization is still flexible: it could be removed by covering the right eye for 6 h. During the following autumn migration, the lateralization becomes more strongly fixed, with a 6 h occlusion of the right eye no longer having an effect. This change from a bilateral to a lateralized magnetic compass appears to be a maturation process, the first such case known so far in birds. Because both eyes mediate identical information about the geomagnetic field, brain asymmetry for the magnetic compass could increase efficiency by setting the other hemisphere free for other processes.
Cryptochromes, blue-light absorbing proteins involved in the circadian clock, have been proposed to be the receptor molecules of the avian magnetic compass. In birds, several cryptochromes occur: Cryptochrome 2, Cryptochrome 4 and two splice products of Cryptochrome 1, Cry1a and Cry1b. With an antibody not distinguishing between the two splice products, Cryptochrome 1 had been detected in the retinal ganglion cells of garden warblers during migration. A recent study located Cry1a in the outer segments of UV/V-cones in the retina of domestic chickens and European robins, another migratory species. Here we report the presence of cryptochrome 1b (eCry1b) in retinal ganglion cells and displaced ganglion cells of European Robins, Erithacus rubecula. Immuno histochemistry at the light microscopic and electron microscopic level showed eCry1b in the cell plasma, free in the cytosol as well as bound to membranes. This is supported by immuno blotting. However, this applies only to robins in the migratory state. After the end of the migratory phase, the amount of eCry1b was markedly reduced and hardly detectable. In robins, the amount of eCry1b in the retinal ganglion cells varies with season: it appears to be strongly expressed only during the migratory period when the birds show nocturnal migratory restlessness. Since the avian magnetic compass does not seem to be restricted to the migratory phase, this seasonal variation makes a role of eCry1b in magnetoreception rather unlikely. Rather, it could be involved in physiological processes controlling migratory restlessness and thus enabling birds to perform their nocturnal flights.