### Refine

#### Document Type

- Article (3)
- Doctoral Thesis (1)

#### Language

- English (4)

#### Has Fulltext

- yes (4)

#### Is part of the Bibliography

- no (4)

#### Keywords

#### Institute

- Physik (4)
- Sportwissenschaften (1)

When a very strong light field is applied to a molecule an electron can be ejected by tunneling. In order to quantify the time-resolved dynamics of this ionization process, the concept of the Wigner time delay can be used. The properties of this process can depend on the tunneling direction relative to the molecular axis. Here, we show experimental and theoretical data on the Wigner time delay for tunnel ionization of H2 molecules and demonstrate its dependence on the emission direction of the electron with respect to the molecular axis. We find, that the observed changes in the Wigner time delay can be quantitatively explained by elongated/shortened travel paths of the emitted electrons, which occur due to spatial shifts of the electrons’ birth positions after tunneling. Our work provides therefore an intuitive perspective towards the Wigner time delay in strong-field ionization.

We experimentally investigated the quasifree mechanism (QFM) in one-photon double ionization of He and H2 at 800 eV photon energy and circular polarization with a COLTRIMS reaction microscope. Our work provides new insight into this elusive photoionization mechanism that was predicted by Miron Amusia more than four decades ago. We found the distinct four-fold symmetry in the angular emission pattern of QFM electrons from H2 double ionization that has previously only been observed for He. Furthermore, we provide experimental evidence that the photon momentum is not imparted onto the center of mass in quasifree photoionization, which is in contrast to the situation in single ionization and in double ionization mediated by the shake-off and knock-out mechanisms. This finding is substantiated by numerical results obtained by solving the system’s full-dimensional time-dependent Schrödinger equation beyond the dipole approximation.

The present work deals with photoionization in the realm of the absorption of one single photon. The formal treatment of one-photon ionization usually employs a semi-classical approach, where the electron’s initial and final states are described as quantum-mechanical wave functions but the photon is treated as a classical electromagnetic wave. In the calculation of photoionization cross sections with this semi-classical method, there is an often used approximation which is called the electric dipole approximation. Mathematically, the application of the dipole approximation corresponds to truncating the series expansion of an exponential after the leading term. Physically, this means neglecting the linear photon momentum and the spatial dependence of the light field. The dipole approximation is valid if the wavelength of the light is much larger than the spatial extent of the target and if the photon momentum is small compared to the momenta of the reaction products, which is generally the case for photon energies short above the electron binding energy.
For the present work, we experimentally investigated nondipolar photoionization, i.e., one-photon ionization at high photon energies where the dipole approximation breaks down. In our experiments, we irradiated single atoms and molecules with such high-energetic photons and measured the three-dimensional momentum distributions of the reaction fragments to uncover the effects of the linear photon momentum and the spatially-dependent light field on photoionization. Our observations allow the first profound insight into photoionization that reveals all photon properties, i.e., photon energy, spin, linear momentum, and the speed of light. Hopefully, our efforts make a constructive contribution to the understanding and the further exploration of light-matter interaction.

A central motivation for the development of x-ray free-electron lasers has been the prospect of time-resolved single-molecule imaging with atomic resolution. Here, we show that x-ray photoelectron diffraction—where a photoelectron emitted after x-ray absorption illuminates the molecular structure from within—can be used to image the increase of the internuclear distance during the x-ray-induced fragmentation of an O2 molecule. By measuring the molecular-frame photoelectron emission patterns for a two-photon sequential K-shell ionization in coincidence with the fragment ions, and by sorting the data as a function of the measured kinetic energy release, we can resolve the elongation of the molecular bond by approximately 1.2 a.u. within the duration of the x-ray pulse. The experiment paves the road toward time-resolved pump-probe photoelectron diffraction imaging at high-repetition-rate x-ray free-electron lasers.