Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
Institute
- Biochemie und Chemie (2)
- Physik (1)
Zur Generierung der transmembranären elektrochemischen Ionengradienten kann in den Archaea die Protonenpumpe Bakteriorhodopsin Lichtenergie in einen aktiven, auswärtsgerichteten Protonentransport konvertieren. In Vertebraten erlaubt die Aktivität der Na+, K+-ATPase den Aufbau von Ionengradienten, indem sie unter ATP-Hydrolyse Na+-Ionen aus der Zelle und K+-Ionen in die Zelle transportiert. Die molekularen Mechanismen, die es diesen Ionenpumpen ermöglicht, primär aktiven, gerichteten Ionentransport zu bewerkstelligen sind fein abgestimmten und ortsspezifischen Konformationsänderungen. Die Untersuchung der Dynamik und der Ortsspezifität der Konformationsgleichgewichte der Na+,K+-ATPase und des Bakteriorhodopsin, sowie eines homologen bakteriellen Proteins, sind Gegenstand der vorliegenden Arbeit. Na+,K+-ATPase: Die Methode der Voltage-Clamp-Fluorometrie auf Basis zielgerichteter Fluoreszenzmarkierung erlaubte es Konformationsänderungen der Na+,K+-ATPase zeitaufgelöst und ortsspezifisch nachzuweisen und diese partiellen Reaktionen des Na+,K+-ATPase Reaktionszyklus zuzuordnen. Dazu wurden elektrophysiologische Messungen an heterolog exprimierter Na+,K+-ATPase durchgeführt, in der einzelne Cysteine in vermutlichen Reporter-Positionen im Bereich extrazellulär orientierter Schleifen eingebracht werden. Nach Fluoreszenzmarkierung mit TMRM bildete die Mutante N790C einen molekularen Sensorkomplex und reagierte auf K+-Zugabe und Spannungssprünge mit Änderungen in der Fluoreszenzintensität, welche durch Zugabe des spezifischen Na+,K+-ATPase Inhibitors Ouabain gehemmt werden konnten. Die in der vorliegenden Arbeit vorgestellten Ergebnisse erlauben - in situ unter physiologischen Bedingungen - erstmalig Einblicke in die molekularen Details der Konformationsänderungen der Na+,K+-ATPase. Bakteriorhodopsin: Spannungsklemme-Experimente an heterolog exprimiertem Bakteriorhodopsin ergaben Einblicke in die Regulation des Protonenpumpens durch das elektrochemische Membranpotential. Messungen am Wildtyp und den Mutanten D96N, D96G, F171C, F219L und der "Tripel"-Mutante BRD96G,F171C,F219L zeigten, dass das Protonenpumpen von Bakteriorhodopsin maßgeblich durch die Lebensdauer und Spannungsabhängigkeit des M-Intermediats geregelt wird und resultierten in einem Modell für die Erklärung effizienten, vektoriellen Transports auf der Grundlage fein abgestimmter Konformationsänderungen. Proteorhodopsin: Mit Hilfe zeitaufgelöster UV/VIS- und FT-IR-spektroskopischen Messungen, sowie Photostrom-Messungen an künstlichen Lipidmembranen und spannungsgeklemmten Xenopus-Oozyten - die Proteorhodopsin heterolog exprimierten - konnte gezeigt werden, dass Proteorhodopsin als eine pH-abhängige einwärts- oder auswärtsgerichtete Protonenpumpe fungieren kann. Dieses Verhalten steht im Gegensatz zu Bakteriorhodopsin, für das nur unidirektionaler Transport nachgewiesen werden konnte.
The light-driven proton pump bacteriorhodopsin (BR) from Halobacterium salinarum is tightly regulated by the [H+] gradient and transmembrane potential. BR exhibits optoelectric properties, since spectral changes during the photocycle are kinetically controlled by voltage, which predestines BR for optical storage or processing devices. BR mutants with prolonged lifetime of the blue-shifted M intermediate would be advantageous, but the optoelectric properties of such mutants are still elusive. Using expression in Xenopus oocytes and two-electrode voltage-clamping, we analyzed photocurrents of BR mutants with kinetically destabilized (F171C, F219L) or stabilized (D96N, D96G) M intermediate in response to green light (to probe H+ pumping) and blue laser flashes (to probe accumulation/decay of M). These mutants have divergent M lifetimes. As for BR-WT, this strictly correlates with the voltage dependence of H+ pumping. BR-F171C and BR-F219L showed photocurrents similar to BR-WT. Yet, BR-F171C showed a weaker voltage dependence of proton pumping. For both mutants, blue laser flashes applied during and after green-light illumination showed reduced M accumulation and shorter M lifetime. In contrast, BR-D96G and BR-D96N exhibited small photocurrents, with nonlinear current-voltage curves, which increased strongly in the presence of azide. Blue laser flashes showed heavy M accumulation and prolonged M lifetime, which accounts for the strongly reduced H+ pumping rate. Hyperpolarizing potentials augmented these effects. The combination of M-stabilizing and -destabilizing mutations in BR-D96G/F171C/F219L (BR-tri) shows that disruption of the primary proton donor Asp-96 is fatal for BR as a proton pump. Mechanistically, M destabilizing mutations cannot compensate for the disruption of Asp-96. Accordingly, BR-tri and BR-D96G photocurrents were similar. However, BR-tri showed negative blue laser flash-induced currents even without actinic green light, indicating that Schiff base deprotonation in BR-tri exists in the dark, in line with previous spectroscopic investigations. Thus, M-stabilizing mutations, including the triple mutation, drastically interfere with electrochemical H+ gradient generation.
Strong electron correlations can give rise to extraordinary properties of metals with renormalized Landau quasiparticles. Near a quantum critical point, these quasiparticles can be destroyed and non-Fermi liquid behavior ensues. YbRh2Si2 is a prototypical correlated metal exhibiting the formation of quasiparticle and Kondo lattice coherence, as well as quasiparticle destruction at a field-induced quantum critical point. Here we show how, upon lowering the temperature, Kondo lattice coherence develops at zero field and finally gives way to non-Fermi liquid electronic excitations. By measuring the single-particle excitations through scanning tunneling spectroscopy, we find the Kondo lattice peak displays a non-trivial temperature dependence with a strong increase around 3.3 K. At 0.3 K and with applied magnetic field, the width of this peak is minimized in the quantum critical regime. Our results demonstrate that the lattice Kondo correlations have to be sufficiently developed before quantum criticality can set in.