### Refine

#### Document Type

- Article (3)
- Doctoral Thesis (1)

#### Language

- English (4)

#### Has Fulltext

- yes (4)

#### Is part of the Bibliography

- no (4)

#### Keywords

- Fractional Laplacian (1)
- Logarithmic Laplacian (1)
- Nonlocal operators (1)
- Sign-changing solutions (1)
- Small order expansion (1)
- Symmetries (1)
- Uniform regularity (1)
- point inversion (1)
- positivity preserving property (1)
- torsion function (1)

#### Institute

- Informatik und Mathematik (2)
- Mathematik (2)

In the qualitative analysis of solutions of partial differential equations, many interesting questions are related to the shape of solutions. In particular, the symmetries of a given solution are of interest. One of the first more general results in this direction was given in 1979 by Gidas, Ni and Nirenberg... The main tool in proving this symmetry and monotonicity result is the moving plane method. This method, which goes back to Alexandrov’s work on constant mean curvature surfaces in 1962, was introduced in 1971 by Serrin in the context of partial differential equations to analyze an overdetermined problem...

We study the asymptotics of Dirichlet eigenvalues and eigenfunctions of the fractional Laplacian (−Δ)s in bounded open Lipschitz sets in the small order limit s→0+. While it is easy to see that all eigenvalues converge to 1 as s→0+, we show that the first order correction in these asymptotics is given by the eigenvalues of the logarithmic Laplacian operator, i.e., the singular integral operator with Fourier symbol 2log|ξ|. By this we generalize a result of Chen and the third author which was restricted to the principal eigenvalue. Moreover, we show that L2-normalized Dirichlet eigenfunctions of (−Δ)s corresponding to the k-th eigenvalue are uniformly bounded and converge to the set of L2-normalized eigenfunctions of the logarithmic Laplacian. In order to derive these spectral asymptotics, we establish new uniform regularity and boundary decay estimates for Dirichlet eigenfunctions for the fractional Laplacian. As a byproduct, we also obtain corresponding regularity properties of eigenfunctions of the logarithmic Laplacian.

We present a symmetry result to solutions of equations involving the fractional Laplacian in a domain with at least two perpendicular symmetries. We show that if the solution is continuous, bounded, and odd in one direction such that it has a fixed sign on one side, then it will be symmetric in the perpendicular direction. Moreover, the solution will be monotonic in the part where it is of fixed sign. In addition, we present also a class of examples in which our result can be applied.

We show explicit formulas for the evaluation of (possibly higher-order) fractional Laplacians (-△)ˢ of some functions supported on ellipsoids. In particular, we derive the explicit expression of the torsion function and give examples of s-harmonic functions. As an application, we infer that the weak maximum principle fails in eccentric ellipsoids for s ∈ (1; √3 + 3/2) in any dimension n ≥ 2. We build a counterexample in terms of the torsion function times a polynomial of degree 2. Using point inversion transformations, it follows that a variety of bounded and unbounded domains do not satisfy positivity preserving properties either and we give some examples.