Refine
Year of publication
Document Type
- Article (46)
- Contribution to a Periodical (2)
Has Fulltext
- yes (48)
Is part of the Bibliography
- no (48)
Keywords
- Invasive species (5)
- Ecological modelling (4)
- Species distribution modelling (4)
- Maxent (3)
- Antarctica (2)
- Asian tiger mosquito (2)
- Biodiversity (2)
- Biogeography (2)
- Climate change (2)
- Ecology (2)
Nowadays a number of endemic mosquito species are known to possess vector abilities for various diseases, as e.g. the sibling species Culex pipiens and Culex torrentium. Due to their morphological similarity, ecology, distribution and vector abilities, knowledge about these species' population structure is essential. Culicidae from 25 different sampling sites were collected from March till October 2012. All analyses were performed with aligned cox1 sequences with a total length of 658 bp. Population structure as well as distribution patterns of both species were analysed using molecular methods and different statistical tests like distance based redundancy analysis (dbDRA), analysis of molecular variances (AMOVA) or McDonald & Kreitman test and Tajima's D. Within both species, we could show a genetic variability among the cox1 fragment. The construction of haplotype networks revealed one dominating haplotype for Cx. pipiens, widely distributed within Germany and a more homogeneous pattern for Cx. torrentium. The low genetic differences within Cx. pipiens could be a result of an infection with Wolbachia which can induce a sweep through populations by passively taking the also maternally inherited mtDNA through the population, thereby reducing the mitochondrial diversity as an outcome of reproductive incompatibility. Pairwise population genetic differentiation (FST) ranged significantly from moderate to very great between populations of Cx. pipiens and Cx. torrentium. Analyses of molecular variances revealed for both species that the main genetic variability exists within the populations (Cx. pipiens [88.38%]; Cx. torrentium [66.54%]). Based on a distance based redundancy analysis geographical origin explained a small but significant part of the species' genetic variation. Overall, the results confirm that Cx. pipiens and Cx. torrentium underlie different factors regarding their mitochondrial differentiation, which could be a result of endosymbiosis, dispersal between nearly located populations or human introduction.
Die Wärme liebende Asiatische Tigermücke »Aedes albopictus« fühlt sich seit Jahrzehnten im Mittelmeerraum wohl. Sie ist Überträgerin gefährlicher, bisher in Europa nicht verbreiteter Viren. Wird sie sich aufgrund des Klimawandels und anderer Umweltfaktoren weiter nach Norden ausbreiten? Und werden andere eingeschleppte Arten ihr folgen? Das untersucht die Arbeitsgruppe von Prof. Dr. Sven Klimpel mithilfe der ökologischen Nischenmodellierung und genomischer Analysen.
Background: The causative agent of Chagas disease, Trypanosoma cruzi, and its nonpathogenic relative, Trypanosoma rangeli, are transmitted by haematophagous triatomines and undergo a crucial ontogenetic phase in the insect’s intestine. In the process, the parasites interfere with the host immune system as well as the microbiome present in the digestive tract potentially establishing an environment advantageous for development. However, the coherent interactions between host, pathogen and microbiota have not yet been elucidated in detail. We applied a metagenome shotgun sequencing approach to study the alterations in the microbiota of Rhodnius prolixus, a major vector of Chagas disease, after exposure to T. cruzi and T. rangeli focusing also on the functional capacities present in the intestinal microbiome of the insect.
Results: The intestinal microbiota of R. prolixus was dominated by the bacterial orders Enterobacterales, Corynebacteriales, Lactobacillales, Clostridiales and Chlamydiales, whereas the latter conceivably originated from the blood used for pathogen exposure. The anterior and posterior midgut samples of the exposed insects showed a reduced overall number of organisms compared to the control group. However, we also found enriched bacterial groups after exposure to T. cruzi as well as T rangeli. While the relative abundance of Enterobacterales and Corynebacteriales decreased considerably, the Lactobacillales, mainly composed of the genus Enterococcus, developed as the most abundant taxonomic group. This applies in particular to vectors challenged with T. rangeli and at early timepoints after exposure to vectors challenged with T. cruzi. Furthermore, we were able to reconstruct four metagenome-assembled genomes from the intestinal samples and elucidate their unique metabolic functionalities within the triatomine microbiome, including the genome of a recently described insect symbiont, Candidatus Symbiopectobacterium, and the secondary metabolites producing bacteria Kocuria spp.
Conclusions: Our results facilitate a deeper understanding of the processes that take place in the intestinal tract of triatomine vectors during colonisation by trypanosomal parasites and highlight the influential aspects of pathogen-microbiota interactions. In particular, the mostly unexplored metabolic capacities of the insect vector’s microbiome are clearer, underlining its role in the transmission of Chagas disease.
The Culex pipiens complex encompasses five species and subspecies of the genus Culex. Over time, a multitude of morphologically indistinguishable species has been assigned to this complex with several species being classified as important vectors for different diseases. Some species of this complex hibernate in subterranean habitats, and it has been proven that viruses can survive this phase of hibernation. However, studies focusing on the environmental requirements, ecology and spatial and temporal distribution patterns of mosquitos in underground habitats are sparse. Here, we investigate the main environmental factors and dependencies of Culex, considering the number of individuals and survival probabilities in underground habitats during the winter months. Methods. Since the State of Hesse, Germany harbors about 3500 to 4000 subterranean shelters ample availability of subterranean habitats there provides a good opportunity to conduct detailed investigations of the Culex pipiens complex. In this study, we identified a sample of 727 specimens of overwintering females within the Culex pipiens complex from 52 different underground sites collected over a period of 23 years using qPCR. A complete data set of samplings of hibernating mosquitos from 698 subterranean habitats in Central Germany over the same period was available to study the spatial and temporal patterns and the effect of temperature and precipitation conditions on these hibernating populations using a generalized linear model (GLM). Results. Our qPCR-results show, similar to aboveground studies of mosquitos, that Culex pipiens pipiens and Culex torrentium occur sympatrically. On the other hand, Culex pipiens molestus occurred very rarely. The GLM revealed no shifts in species composition over time, but different preferences for subterranean hibernacula, chemical effects on overwintering populations as well as effects of annual and seasonal mean temperature and precipitation during the active phase from March to November. Cx. p. pipiens and Cx. torrentium are the most common species within Hessian caves and other underground habitats during winter. They co-occur with different frequency without any patterns in species composition. Weather conditions influence the number of overwintering mosquitos during the activity phase. Depending on cave parameters, the number of mosquitos decreases during the winter months.
Ein milder Winter hat dazu geführt, dass recht früh Blütezeit und Pollenflug eingesetzt haben. Auch einige heimische Insekten haben sich stärker vermehrt. Doch wie sieht es aus mit neuen „Plagegeistern“ wie exotischen Stechmücken oder eingewanderten Pflanzen wie der Beifußambrosie? Welche Gefahren lauern, was kann man gegen ein weiteres Vordringen invasiver Arten tun? Die Experten vom LOEWE Biodiversität und Klima Forschungszentrum BiK-F, Prof. Sven Klimpel und Dr. Oliver Tackenberg, geben Auskunft.
Background: More than 170 species of tabanids are known in Europe, with many occurring only in limited areas or having become very rare in the last decades. They continue to spread various diseases in animals and are responsible for livestock losses in developing countries. The current monitoring and recording of horseflies is mainly conducted throughout central Europe, with varying degrees of frequency depending on the country. To the detriment of tabanid research, little cooperation exists between western European and Eurasian countries.
Methods: For these reasons, we have compiled available sources in order to generate as complete a dataset as possible of six horsefly species common in Europe. We chose Haematopota pluvialis, Chrysops relictus, C. caecutiens, Tabanus bromius, T. bovinus and T. sudeticus as ubiquitous and abundant species within Europe. The aim of this study is to estimate the distribution, land cover usage and niches of these species. We used a surface-range envelope (SRE) model in accordance with our hypothesis of an underestimated distribution based on Eurocentric monitoring regimes.
Results: Our results show that all six species have a wide range in Eurasia, have a broad climatic niche and can therefore be considered as widespread generalists. Areas with modelled habitat suitability cover the observed distribution and go far beyond these. This supports our assumption that the current state of tabanid monitoring and the recorded distribution significantly underestimates the actual distribution. Our results show that the species can withstand extreme weather and climatic conditions and can be found in areas with only a few frost-free months per year. Additionally, our results reveal that species prefer certain land-cover environments and avoid other land-cover types.
Conclusions: The SRE model is an effective tool to calculate the distribution of species that are well monitored in some areas but poorly in others. Our results support the hypothesis that the available distribution data underestimate the actual distribution of the surveyed species.
Background: Worldwide, the number of recorded human hantavirus infections as well as the number of affected countries is on the rise. In Europe, most human hantavirus infections are caused by the Puumala virus (PUUV), with bank voles (Myodes glareolus) as reservoir hosts. Generally, infection outbreaks have been related to environmental conditions, particularly climatic conditions, food supply for the reservoir species and land use. However, although attempts have been made, the insufficient availability of environmental data is often hampering accurate temporal and spatially explicit models of human hantavirus infections.
Methods: In the present study, dynamics of human PUUV infections between 2001 and 2015 were explored using ArcGIS in order to identify spatio-temporal patterns.
Results: Percentage cover of forest area was identified as an important factor for the spatial pattern, whereas beech mast was found explaining temporal patterns of human PUUV infections in Germany. High numbers of infections were recorded in 2007, 2010 and 2012 and areas with highest records were located in Baden-Wuerttemberg (southwest Germany) and North Rhine-Westphalia (western Germany).
Conclusion: More reliable data on reservoir host distribution, pathogen verification as well as an increased awareness of physicians are some of the factors that should improve future human infection risk assessments in Germany.
Due to its remote and isolated location, Antarctica is home to a unique diversity of species. The harsh conditions have shaped a primarily highly adapted endemic fauna. This includes the notothenioid family Channichthyidae. Their exceptional physiological adaptations have made this family of icefish the focus of many studies. However, studies on their ecology, especially on their parasite fauna, are comparatively rare. Parasites, directly linked to the food chain, can function as biological indicators and provide valuable information on host ecology (e.g., trophic interactions) even in remote habitats with limited accessibility, such as the Southern Ocean. In the present study, channichthyid fish (Champsocephalus gunnari: n = 25, Chaenodraco wilsoni: n = 33, Neopagetopsis ionah: n = 3, Pagetopsis macropterus: n = 4, Pseudochaenichthys georgianus: n = 15) were collected off South Shetland Island, Elephant Island, and the tip of the Antarctic Peninsula (CCAML statistical subarea 48.1). The parasite fauna consisted of 14 genera and 15 species, belonging to the six taxonomic groups including Digenea (four species), Nematoda (four), Cestoda (two), Acanthocephala (one), Hirudinea (three), and Copepoda (one). The stomach contents were less diverse with only Crustacea (Euphausiacea, Amphipoda) recovered from all examined fishes. Overall, 15 new parasite-host records could be established, and possibly a undescribed genotype or even species might exist among the nematodes.
Eastern boundary upwelling provides the conditions for high marine productivity in the Canary Current System off NW-Africa. Despite its considerable importance to fisheries, knowledge on this marine ecosystem is only limited. Here, parasites were used as indicators to gain insight into the host ecology and food web of two pelagic fish species, the commercially important species Trichiurus lepturus Linnaeus, 1758, and Nealotus tripes Johnson, 1865. Fish specimens of T. lepturus (n = 104) and N. tripes (n = 91), sampled from the Canary Current System off the Senegalese coast and Cape Verde Islands, were examined, collecting data on their biometrics, diet and parasitisation. In this study, the first parasitological data on N. tripes are presented. T. lepturus mainly preyed on small pelagic Crustacea and the diet of N. tripes was dominated by small mesopelagic Teleostei. Both host species were infested by mostly generalist parasites. The parasite fauna of T. lepturus consisted of at least nine different species belonging to six taxonomic groups, with a less diverse fauna of ectoparasites and cestodes in comparison to studies in other coastal ecosystems (Brazil Current and Kuriosho Current). The zoonotic nematode Anisakis pegreffii occurred in 23% of the samples and could pose a risk regarding food safety. The parasite fauna of N. tripes was composed of at least thirteen species from seven different taxonomic groups. Its most common parasites were digenean ovigerous metacercariae, larval cestodes and a monogenean species (Diclidophoridae). The observed patterns of parasitisation in both host species indicate their trophic relationships and are typical for mesopredators from the subtropical epi- and mesopelagic. The parasite fauna, containing few dominant species with a high abundance, represents the typical species composition of an eastern boundary upwelling ecosystem.