### Refine

#### Year of publication

- 2002 (6) (remove)

#### Language

- English (6)

#### Has Fulltext

- yes (6)

#### Is part of the Bibliography

- no (6)

#### Keywords

#### Institute

- Physik (6) (remove)

We calculate the antibaryon-to-baryon ratios, anti-p/p, anti-Lambda/Lambda, anti-Xi/Xi, and anti-Omega/Omega for Au+Au collisions at RHIC (sqrt{s}_{NN}=200 GeV). The effects of strong color fields associated with an enhanced strangeness and diquark production probability and with an effective decrease of formation times are investigated. Antibaryon-to-baryon ratios increase with the color field strength. The ratios also increase with the strangeness content |S|. The netbaryon number at midrapidity considerably increases with the color field strength while the netproton number remains roughly the same. This shows that the enhanced baryon transport involves a conversion into the hyperon sector (hyperonization) which can be observed in the (Lambda - anti-Lambda)/(p - anti-p) ratio.

We calculate the kaon HBT radius parameters for high energy heavy ion collisions, assuming a first order phase transition from a thermalized Quark-Gluon-Plasma to a gas of hadrons. At high transverse momenta K_T ~ 1 GeV/c direct emission from the phase boundary becomes important, the emission duration signal, i.e., the R_out/R_side ratio, and its sensitivity to T_c (and thus to the latent heat of the phase transition) are enlarged. Moreover, the QGP+hadronic rescattering transport model calculations do not yield unusual large radii (R_i<9fm). Finite momentum resolution effects have a strong impact on the extracted HBT parameters (R_i and lambda) as well as on the ratio R_out/R_side.

We make predictions for the kaon interferometry measurements in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). A first order phase transition from a thermalized Quark-Gluon-Plasma (QGP) to a gas of hadrons is assumed for the transport calculations. The fraction of kaons that are directly emitted from the phase boundary is considerably enhanced at large transverse momenta K T ~ 1 GeV/c. In this kinematic region, the sensitivity of the R out/R side ratio to the QGP-properties is enlarged. Here, the results of the 1-dimensional correlation analysis are presented. The extracted interferometry radii, depending on K-Theta, are not unusually large and are strongly affected by momentum resolution effects.

We present calculations of two-pion and two-kaon correlation functions in relativistic heavy ion collisions from a relativistic transport model that includes explicitly a first-order phase transition from a thermalized quark-gluon plasma to a hadron gas. We compare the obtained correlation radii with recent data from RHIC. The predicted R_side radii agree with data while the R_out and R_long radii are overestimated. We also address the impact of in-medium modifications, for example, a broadening of the rho-meson, on the correlation radii. In particular, the longitudinal correlation radius R_long is reduced, improving the comparison to data.

Invited talk at the International Workshop XXX on Gross Properties of Nuclei and Nuclear Excitations - Ultrarelativistic Heavy-Ion Collisions, Jan. 13-19, 2002, Hirschegg, Austria. Report-no: LBNL-49674. We discuss predictions for the pion and kaon interferometry measurements in relativistic heavy ion collisions at SPS and RHIC energies. In particular, we confront relativistic transport model calculations that include explicitly a first-order phase transition from a thermalized quark-gluon plasma to a hadron gas with recent data from the RHIC experiments. We critically examine the "HBT-puzzle" both from the theoretical as well as from the experimental point of view. Alternative scenarios are briefly explained.