Refine
Document Type
- Article (8)
- Preprint (4)
- Doctoral Thesis (1)
Language
- English (13)
Has Fulltext
- yes (13)
Is part of the Bibliography
- no (13)
Keywords
- Giraffa (3)
- speciation (3)
- East Africa (2)
- Hybridization (2)
- Speciation (2)
- conservation (2)
- gene flow (2)
- giraffe (2)
- hybridization (2)
- population genomics (2)
All giraffe (Giraffa) were previously assigned to a single species (G. camelopardalis) and nine subspecies. However, multi‐locus analyses of all subspecies have shown that there are four genetically distinct clades and suggest four giraffe species. This conclusion might not be fully accepted due to limited data and lack of explicit gene flow analyses. Here, we present an extended study based on 21 independent nuclear loci from 137 individuals. Explicit gene flow analyses identify less than one migrant per generation, including between the closely related northern and reticulated giraffe. Thus, gene flow analyses and population genetics of the extended dataset confirm four genetically distinct giraffe clades and support four independent giraffe species. The new findings support a revision of the IUCN classification of giraffe taxonomy. Three of the four species are threatened with extinction, and mostly occurring in politically unstable regions, and as such, require the highest conservation support possible.
The genus Giraffa likely evolved around seven million years ago in Indo-Asia and spread over the Arabian-African land bridge into Eastern Africa. The oldest fossil of the African lineage was found in Kenya and dated to 7-5.4 Mya. Beside modern giraffe, four additional African species have likely existed (G. gracilis, G. pygmaea, G. stillei, and G. jumae). Based on their morphological similarities, G. gracilis is often considered to be the closest relative of the modern giraffe. Nevertheless, the phylogeny within the genus Giraffa is largely unresolved.
Modern giraffe (Giraffa sp.) have been neglected by the scientific community for a long time and still very little is known about their biology. Traditionally, present-day giraffe have been considered a single species (G. camelopardalis) which is divided into six to eleven subspecies, with nine subspecies being the most accepted classification. This classification was based on morphological differences and geographic ranges. However, recent genetic analyses found hidden diversity within Giraffa and proposed four genetically distinct giraffe species (G. camelopardalis, G. reticulata, G. tippelskirchi, G. giraffa) with presumably little gene flow among them.
Gene flow on a population level is the exchange of genetic information among populations facilitated by the migration of individuals between populations. Additionally, it is an important criterion to delineate species, because many species concepts, especially the Biological Species Concept, rely on the concept of reproductive isolation. Yet, new genetic methods are identifying an increasing number of species that show signs of introgressive hybridization or gene flow among them. Therefore, strict reproductive isolation cannot always be applied to delineate species, especially in young, probably still diverging, species such as giraffe.
Therefore, giraffe are ideal study organisms to investigate the level of gene flow in recently diverged species with adjacent or potentially overlapping ranges. Furthermore, their recent classification as “Vulnerable” by the IUCN and their unreliable distribution maps require the genetic evaluation of their population structure, distribution and conservation status.
In Publication 1 (Winter et al. (2018a), Ecological Genetics and Genomics, 7–8, 1–5), I studied the distribution and matrilineal population structure of Angolan giraffe (G. giraffa angolensis) using sequences from the cytochrome b gene (1,140 bp) and the mitochondrial control region for individuals from across their known range and beyond, and additionally including individuals from all known giraffe species and subspecies. The reconstruction of a phylogenetic tree and a mitochondrial haplotype network allowed to identify the most easterly known natural population of Angolan giraffe, a population that was previously assigned to their sister-subspecies South African giraffe (G. giraffa giraffa), indicating the limit of classification by morphology and geography. Furthermore, the analyses show that Namibia’s iconic desert-dwelling giraffe population is genetically distinct, even from the nearest population at Etosha National Park, suggesting very limited, if any, natural exchange of matrilines. Yet, no geographic barriers are known for this region that would prevent genetic exchange. Therefore, the two populations are likely on different evolutionary trajectories. Limited individuals with an Etosha haplotype further suggest that translocation of Etosha giraffe into the desert population had only a minor impact on the local population. Two separate haplogroups within Etosha National Park suggest an “out of Etosha” radiation of Angolan giraffe to the East followed by a later back-migration.
In Publication 2 (Winter et al. (2018b), Ecology and Evolution, 8(20), 10156–10165), I investigated the genetic population structure of giraffe across their range (n = 137) with focus on the amount of gene flow among the proposed giraffe species with a 3-fold increased set of nuclear introns (n = 21). Limited gene flow of less than one effective migrant per generation, even between the closely related northern (G. camelopardalis) and reticulated giraffe (G. reticulata) further supports the existence of four giraffe species by a different methodology, gene flow. This is significant because most species concepts build on reproductive isolation. Furthermore, this result is corroborated by four distinct major clades in a phylogenetic tree analysis, and distinct clusters in Principal Component Analysis and STRUCTURE analysis. All these analyses suggest a low level of genetic exchange among the four giraffe species and, therefore, a high degree of reproductive isolation in accordance with the Biological Species Concept (BSC). In Addition, only a single individual in 137 was identified as being potential of natural hybrid origin, which promotes the four-species concept further. ...
Species is the fundamental taxonomic unit in biology and its delimitation has implications for conservation. In giraffe (Giraffa spp.), multiple taxonomic classifications have been proposed since the early 1900s.1 However, one species with nine subspecies has been generally accepted,2 likely due to limited in-depth assessments, subspecies hybridizing in captivity,3,4 and anecdotal reports of hybrids in the wild.5 Giraffe taxonomy received new attention after population genetic studies using traditional genetic markers suggested at least four species.6,7 This view has been met with controversy,8 setting the stage for debate.9,10 Genomics is significantly enhancing our understanding of biodiversity and speciation relative to traditional genetic approaches and thus has important implications for species delineation and conservation.11 We present a high-quality de novo genome assembly of the critically endangered Kordofan giraffe (G. camelopardalis antiquorum)12 and a comprehensive whole-genome analysis of 50 giraffe representing all traditionally recognized subspecies. Population structure and phylogenomic analyses support four separately evolving giraffe lineages, which diverged 230–370 ka ago. These lineages underwent distinct demographic histories and show different levels of heterozygosity and inbreeding. Our results strengthen previous findings of limited gene flow and admixture among putative giraffe species6,7,9 and establish a genomic foundation for recognizing four species and seven subspecies, the latter of which should be considered as evolutionary significant units. Achieving a consensus over the number of species and subspecies in giraffe is essential for adequately assessing their threat level and will improve conservation efforts for these iconic taxa.
Highlights
• Genomes for all five Natrix species, two represented by two distinct subspecies each, were sequenced.
• Two genomes were de-novo assembled to their 1.7 Gb length with a contig N50 of 4.6 Mbp and 1.5 Mbp.
• Evidence for interspecific hybridization, both between allopatric and widely sympatric species.
• Fossil-calibrated molecular clock using genomes indicates that species are ancient several million-year-old lineages.
• Our findings imply that speciation took place despite continued gene flow.
Abstract
Understanding speciation is one of the cornerstones of biological diversity research. Currently, speciation is often understood as a continuous process of divergence that continues until genetic or other incompatibilities minimize or prevent interbreeding. The Palearctic snake genus Natrix is an ideal group to study speciation, as it comprises taxa representing distinct stages of the speciation process, ranging from widely interbreeding parapatric taxa through parapatric species with very limited gene flow in narrow hybrid zones to widely sympatric species. To understand the evolution of reproductive isolation through time, we have sequenced the genomes of all five species within this genus and two additional subspecies. We used both long-read and short-read methods to sequence and de-novo-assemble two high-quality genomes (Natrix h. helvetica, Natrix n. natrix) to their 1.7 Gb length with a contig N50 of 4.6 Mbp and 1.5 Mbp, respectively, and used these as references to assemble the remaining short-read-based genomes. Our phylogenomic analyses yielded a well-supported dated phylogeny and evidence for a surprisingly complex history of interspecific gene flow, including between widely sympatric species. Furthermore, evidence for gene flow was also found for currently allopatric species pairs. Genetic exchange among these well-defined, distinct, and several million-year-old reptile species emphasizes that speciation and maintenance of species distinctness can occur despite continued genetic exchange.
The project focuses on the efficiency of combined technologies to reduce the release of micropollutants and bacteria into surface waters via sewage treatment plants of different size and via stormwater overflow basins of different types. As a model river in a highly populated catchment area, the river Schussen and, as a control, the river Argen, two tributaries of Lake Constance, Southern Germany, are under investigation in this project. The efficiency of the different cleaning technologies is monitored by a wide range of exposure and effect analyses including chemical and microbiological techniques as well as effect studies ranging from molecules to communities.
All giraffe (Giraffa) were previously assigned to a single species (G. Camelopardalis) and nine subspecies. However, multi-locus analyses of all subspecies have shown that there are four genetically distinct clades and suggest four giraffe species. This conclusion might not be fully accepted due to limited data and lack of explicit gene flow analyses. Here we present an extended study based on 21 independent nuclear loci from 137 individuals. Explicit gene flow analyses identify less than one migrant per generation, including between the closely related northern and reticulated giraffe. Thus, gene flow analyses and population genetics of the extended dataset confirm four genetically distinct giraffe clades and support four independent giraffe species. The new findings call for a revision of the IUCN classification of giraffe taxonomy. Three of the four species are threatened with extinction, mostly occurring in politically unstable regions, and as such, require the highest conservation support possible.
Background: Ever decreasing costs along with advances in sequencing and library preparation technologies enable even small research groups to generate chromosome-level assemblies today. Here we report the generation of an improved chromosome-level assembly for the Siamese fighting fish (Betta splendens) that was carried out during a practical university Master’s course. The Siamese fighting fish is a popular aquarium fish and an emerging model species for research on aggressive behaviour. We updated the current genome assembly by generating a new long-read nanopore-based assembly with subsequent scaffolding to chromosome-level using previously published HiC data.
Findings: The use of nanopore-based long-read data sequenced on a MinION platform (Oxford Nanopore Technologies) allowed us to generate a baseline assembly of only 1,276 contigs with a contig N50 of 2.1 Mbp, and a total length of 441 Mbp. Scaffolding using previously published HiC data resulted in 109 scaffolds with a scaffold N50 of 20.7 Mbp. More than 99% of the assembly is comprised in 21 scaffolds. The assembly showed the presence of 95.8% complete BUSCO genes from the Actinopterygii dataset indicating a high quality of the assembly.
Conclusion: We present an improved full chromosome-level assembly of the Siamese fighting fish generated during a university Master’s course. The use of ~35× long-read nanopore data drastically improved the baseline assembly in terms of continuity. We show that relatively in-expensive high-throughput sequencing technologies such as the long-read MinION sequencing platform can be used in educational settings allowing the students to gain practical skills in modern genomics and generate high quality results that benefit downstream research projects.
Three of the four species of giraffe are threatened, particularly the northern giraffe (Giraffa camelopardalis), which collectively have the smallest known wild population estimates. Among the three subspecies of the northern giraffe, the West African giraffe (Giraffa camelopardalis peralta) had declined to 49 individuals by 1996 and only recovered due to conservation efforts undertaken in the past 25 years, while the Kordofan giraffe (Giraffa camelopardalis antiquorum) remains at <2300 individuals distributed in small, isolated populations over a large geographical range in Central Africa. These combined factors could lead to genetically depauperated populations. We analyzed 119 mitochondrial sequences and 26 whole genomes of northern giraffe individuals to investigate their population structure and assess the recent demographic history and current genomic diversity of West African and Kordofan giraffe. Phylogenetic and population structure analyses separate the three subspecies of northern giraffe and suggest genetic differentiation between populations from eastern and western areas of the Kordofan giraffe’s range. Both West African and Kordofan giraffe show a gradual decline in effective population size over the last 10 ka and have moderate genome-wide heterozygosity compared to other giraffe species. Recent inbreeding levels are higher in the West African giraffe and in Kordofan giraffe from Garamba National Park, Democratic Republic of Congo. Although numbers for both West African and some populations of Kordofan giraffe have increased in recent years, the threat of habitat loss, climate change impacts, and illegal hunting persists. Thus, future conservation actions should consider close genetic monitoring of populations to detect and, where practical, counteract negative trends that might develop.
Background: In the speciation continuum, the strength of reproductive isolation varies, and species boundaries are blurred by gene flow. Interbreeding among giraffe (Giraffa spp.) in captivity is known, and anecdotal reports of natural hybrids exist. In Kenya, Nubian (G. camelopardalis camelopardalis), reticulated (G. reticulata), and Masai giraffe sensu stricto (G. tippelskirchi tippelskirchi) are parapatric, and thus, the country might be a melting pot for these taxa. We analyzed 128 genomes of wild giraffe, 113 newly sequenced, representing these three taxa.
Results: We found varying levels of Nubian ancestry in 13 reticulated giraffe sampled across the Laikipia Plateau most likely reflecting historical gene flow between these two lineages. Although comparatively weaker signs of ancestral gene flow and potential mitochondrial introgression from reticulated into Masai giraffe were also detected, estimated admixture levels between these two lineages are minimal. Importantly, contemporary gene flow between East African giraffe lineages was not statistically significant. Effective population sizes have declined since the Late Pleistocene, more severely for Nubian and reticulated giraffe.
Conclusions: Despite historically hybridizing, these three giraffe lineages have maintained their overall genomic integrity suggesting effective reproductive isolation, consistent with the previous classification of giraffe into four species.
The snake pipefish, Entelurus aequoreus (Linnaeus, 1758), is a slender, up to 60 cm long, northern Atlantic fish that dwells in open seagrass habitats and has recently expanded its distribution range. The snake pipefish is part of the family Syngnathidae (seahorses and pipefish) that has undergone several characteristic morphological changes, such as loss of pelvic fins and elongated snout. Here, we present a highly contiguous, near chromosome-scale genome of the snake pipefish assembled as part of a university master’s course. The final assembly has a length of 1.6 Gbp in 7,391 scaffolds, a scaffold and contig N50 of 62.3 Mbp and 45.0 Mbp and L50 of 12 and 14, respectively. The largest 28 scaffolds (>21 Mbp) span 89.7% of the assembly length. A BUSCO completeness score of 94.1% and a mapping rate above 98% suggest a high assembly completeness. Repetitive elements cover 74.93% of the genome, one of the highest proportions so far identified in vertebrate genomes. Demographic modeling using the PSMC framework indicates a peak in effective population size (50 – 100 kya) during the last interglacial period and suggests that the species might largely benefit from warmer water conditions, as seen today. Our updated snake pipefish assembly forms an important foundation for further analysis of the morphological and molecular changes unique to the family Syngnathidae.