Refine
Year of publication
Language
- English (33)
Has Fulltext
- yes (33)
Is part of the Bibliography
- no (33)
Keywords
- Hodgkin lymphoma (4)
- classical Hodgkin lymphoma (3)
- B-cell lymphoma (2)
- anaplastic large cell lymphoma (2)
- B-cell immunology (1)
- B-cell receptor (1)
- B-cell transcription factors (1)
- BATF3 (1)
- BEACOPP (1)
- Cell staining (1)
Institute
We retrospectively investigated histopathological growth patterns in individuals with advanced nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) treated within the randomized HD18 study. In all, 35/60 patients (58%) presented with atypical growth patterns. Patients with atypical growth patterns more often had stage IV disease (P = 0·0354) and splenic involvement (P = 0·0048) than patients with typical growth patterns; a positive positron emission tomography after two cycles of chemotherapy (PET-2) tended to be more common (P = 0·1078). Five-year progression-free survival [hazard ratio (HR) = 0·86; 95% confidence interval (CI) = 0·49–1·47] and overall survival (HR = 0·85; 95% CI = 0·49–1·51) did not differ between the groups after study treatment with PET-2-guided escalated BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, prednisone). Thus, advanced NLPHL is often associated with atypical growth patterns but their prognostic impact is compensated by PET-2-guided escalated BEACOPP.
TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma
(2009)
Proliferation and survival of Hodgkin and Reed/Sternberg (HRS) cells, the malignant cells of classical Hodgkin lymphoma (cHL), are dependent on constitutive activation of nuclear factor {kappa}B (NF-{kappa}B). NF-{kappa}B activation through various stimuli is negatively regulated by the zinc finger protein A20. To determine whether A20 contributes to the pathogenesis of cHL, we sequenced TNFAIP3, encoding A20, in HL cell lines and laser-microdissected HRS cells from cHL biopsies. We detected somatic mutations in 16 out of 36 cHLs (44%), including missense mutations in 2 out of 16 Epstein-Barr virus–positive (EBV+) cHLs and a missense mutation, nonsense mutations, and frameshift-causing insertions or deletions in 14 out of 20 EBV– cHLs. In most mutated cases, both TNFAIP3 alleles were inactivated, including frequent chromosomal deletions of TNFAIP3. Reconstitution of wild-type TNFAIP3 in A20-deficient cHL cell lines revealed a significant decrease in transcripts of selected NF-{kappa}B target genes and caused cytotoxicity. Extending the mutation analysis to primary mediastinal B cell lymphoma (PMBL), another lymphoma with constitutive NF-{kappa}B activity, revealed destructive mutations in 5 out of 14 PMBLs (36%). This report identifies TNFAIP3 (A20), a key regulator of NF-{kappa}B activity, as a novel tumor suppressor gene in cHL and PMBL. The significantly higher frequency of TNFAIP3 mutations in EBV– than EBV+ cHL suggests complementing functions of TNFAIP3 inactivation and EBV infection in cHL pathogenesis.
Background: Cannabinoid receptor 1 (CB1) is expressed in certain types of malignancies. An analysis of CB1 expression and function in Hodgkin lymphoma (HL), one of the most frequent lymphomas, was not performed to date.
Design and Methods: We examined the distribution of CB1 protein in primary cases of HL. Using lymphoma derived cell lines, the role of CB1 signaling on cell survival was investigated.
Results: A predominant expression of CB1 was found in Hodgkin-Reed-Sternberg cells in a vast majority of classical HL cases. The HL cell lines L428, L540 and KM-H2 showed strong CB1-abundance and displayed a dose-dependent decline of viability under CB1 inhibition with AM251. Further, application of AM251 led to decrease of constitutively active NFκB/p65, a crucial survival factor of HRS-cells, and was followed by elevation of apoptotic markers in HL cells.
Conclusions: The present study identifies CB1 as a feature of HL, which might serve as a potential selective target in the treatment of Hodgkin lymphoma.
Bioinformatics analysis quantifies neighborhood preferences of cancer cells in Hodgkin lymphoma
(2017)
Motivation Hodgkin lymphoma is a tumor of the lymphatic system and represents one of the most frequent lymphoma in the Western world. It is characterized by Hodgkin cells and Reed-Sternberg cells, which exhibit a broad morphological spectrum. The cells are visualized by immunohistochemical staining of tissue sections. In pathology, tissue images are mainly manually evaluated, relying on the expertise and experience of pathologists. Computational quantification methods become more and more essential to evaluate tissue images. In particular, the distribution of cancer cells is of great interest.
Results Here, we systematically quantified and investigated cancer cell properties and their spatial neighborhood relations by applying statistical analyses to whole slide images of Hodgkin lymphoma and lymphadenitis, which describes a non-cancerous inflammation of the lymph node. We differentiated cells by their morphology and studied the spatial neighborhood relation of more than 400,000 immunohistochemically stained cells. We found that, according to their morphological features, the cells exhibited significant preferences for and aversions to cells of specific profiles as nearest neighbor. We quantified differences between Hodgkin lymphoma and lymphadenitis concerning the neighborhood relations of cells and the sizes of cells. The approach can easily be applied to other cancer types.
Mantle cell lymphoma (MCL) is a unique type of B-cell non-Hodgkin's lymphoma, which very rarely exhibits skin involvement. We herein describe the case of a 55-year-old woman, who initially presented with a nodular mass of the right infraorbital region. On histological analysis of the subcutaneous tissue, a diffuse neoplastic cell infiltration was identified, composed of medium‑sized lymphoid cells with irregular nuclei, which was diagnosed as MCL. The tumor cells were positive for CD5, CD20, CD79a, cyclin D1 and sex‑determining region Y-box 11, but negative for CD10 and CD23. Our patient received six cycles of R‑CHOP chemotherapy and intrathecal methotrexate as central nervous system prophylaxis. However, the patient relapsed 1 year later and was treated with two cycles of R‑DHAP and one cycle of intrathecal methotrexate. After achieving partial remission, the patient was consolidated with peripheral blood stem cell transplantation using the BEAM conditioning regime. While prior case studies suggest that skin invasion by MCL is associated with a poor prognosis, our patient remains alive almost 4 years after the initial presentation. Skin involvement as a first sign of systemic MCL is very rare and must be considered.
The B-cell receptor (BCR) signaling pathway is a crucial pathway of B cells, both for their survival and for antigen-mediated activation, proliferation and differentiation. Its activation is also critical for the genesis of many lymphoma types. BCR-mediated lymphoma proliferation may be caused by activating BCR-pathway mutations and/or by active or tonic stimulation of the BCR. BCRs of lymphomas have frequently been described as polyreactive. In this review, the role of specific target antigens of the BCRs of lymphomas is highlighted. These antigens have been found to be restricted to specific lymphoma entities. The antigens can be of infectious origin, such as H. pylori in gastric MALT lymphoma or RpoC of M. catarrhalis in nodular lymphocyte predominant Hodgkin lymphoma, or they are autoantigens. Examples of such autoantigens are the BCR itself in chronic lymphocytic leukemia, LRPAP1 in mantle cell lymphoma, hyper-N-glycosylated SAMD14/neurabin-I in primary central nervous system lymphoma, hypo-phosphorylated ARS2 in diffuse large B-cell lymphoma, and hyper-phosphorylated SLP2, sumoylated HSP90 or saposin C in plasma cell dyscrasia. Notably, atypical posttranslational modifications are often responsible for the immunogenicity of many autoantigens. Possible therapeutic approaches evolving from these specific antigens are discussed.
Lack of sensitive diagnostic tests impairs the understanding of the epidemiology of histoplasmosis, a disease whose burden is estimated to be largely underrated. Broad-range PCRs have been applied to identify fungal agents from pathology blocks, but sensitivity is variable. In this study, we compared the results of a specific Histoplasma qPCR (H. qPCR) with the results of a broad-range qPCR (28S qPCR) on formalin-fixed, paraffin-embedded (FFPE) tissue specimens from patients with proven fungal infections (n = 67), histologically suggestive of histoplasmosis (n = 36) and other mycoses (n = 31). The clinical sensitivity for histoplasmosis of the H. qPCR and the 28S qPCR was 94% and 48.5%, respectively. Samples suggestive for other fungal infections were negative with the H. qPCR. The 28S qPCR did not amplify DNA of Histoplasma in FFPE in these samples, but could amplify DNA of Emergomyces (n = 1) and Paracoccidioides (n = 2) in three samples suggestive for histoplasmosis but negative in the H. qPCR. In conclusion, amplification of Histoplasma DNA from FFPE samples is more sensitive with the H. qPCR than with the 28S qPCR. However, the 28S qPCR identified DNA of other fungi in H. qPCR-negative samples presenting like histoplasmosis, suggesting that the combination of both assays may improve the diagnosis.
Mucormycosis is an invasive fungal infection associated with high mortality, partly due to delayed diagnosis and inadequate empiric therapy. As fungal cultures often fail to grow Mucorales, identification of respective hyphae in tissue is frequently needed for diagnosis but may be challenging. We studied fluorescence in situ hybridization (FISH) targeting specific regions of the fungal ribosomal RNA (rRNA) of Mucorales to improve diagnosis of mucormycosis from tissue samples. We generated a probe combination specifically targeting Mucorales. Probe specificity was verified in silico and using cultivated fungi. Mucorales hyphae in tissue of a mouse model demonstrated a bright cytoplasmatic hybridization signal. In tissue samples of patients with mucormycosis, a positive signal was seen in 7 of 12 (58.3%) samples. However, autofluorescence in 3 of 7 (42.9%) samples impaired the diagnostic yield. Subsequent experiments suggested that availability of nutrients and antifungal therapy may impact on the FISH signal obtained with Mucorales hyphae. Diagnosis of mucormycosis from tissue might be improved by rRNA FISH in a limited number of cases only. FISH signals may reflect different wphysiological states of fungi in tissue. Further studies are needed to define the value of FISH to diagnose mucormycosis from other clinical samples.
Classical Hodgkin lymphoma (cHL) is one of the most common malignant lymphomas in Western Europe. The nodular sclerosing subtype of cHL (NS cHL) is characterized by a proliferation of fibroblasts in the tumor microenvironment, leading to fibrotic bands surrounding the lymphoma infiltrate. Several studies have described a crosstalk between the tumour cells of cHL, the Hodgkin- and Reed-Sternberg (HRS) cells, and cancer-associated fibroblasts. However, to date a deep molecular characterization of these fibroblasts is lacking. Thus, the aim of the present study is a comprehensive characterization of these fibroblasts. Gene expression profiling and methylation profiles of fibroblasts isolated from primary lymph node suspensions revealed persistent differences between fibroblasts obtained from NS cHL and lymphadenitis. NS cHL derived fibroblasts exhibit a myofibroblastic phenotype characterized by myocardin (MYOCD) expression. Moreover, TIMP3, an inhibitor of matrix metalloproteinases, was strongly upregulated in NS cHL fibroblasts, likely contributing to the accumulation of collagen in sclerotic bands of NS cHL. As previously shown for other types of cancer-associated fibroblasts, treatment by luteolin could reverse this fibroblast phenotype and decrease TIMP3 secretion. NS cHL fibroblasts showed enhanced proliferation when they were exposed to soluble factors released from HRS cells. For HRS cells, soluble factors from fibroblasts were not sufficient to protect them from Brentuximab-Vedotin induced cell death. However, HRS cells adherent to fibroblasts were protected from Brentuximab-Vedotin induced injury. In summary, we confirm the importance of fibroblasts for HRS cell survival and identify TIMP3 which probably contributes as a major factor to the typical fibrosis observed in NS cHL.
Simple Summary: The role of transcriptionally deregulated miRNAs (microRNAs) in classical Hodgkin lymphoma (cHL) is still not fully understood. To address this issue, we have performed global miRNA expression profiling of commonly used cHL cell lines and we present a complete cHL miRNome (microRNome). Within this group, we identify miRNAs recurrently deregulated in cHL cell lines, and compare them to non-Hodgkin lymphoma cell lines and sorted normal CD77+ germinal centre B-cells. Moreover, we show that several of the recurrently overexpressed miRNAs in cHL cell lines, and also primary microdissected HRS (Hodgkin and Reed-Sternberg) cells, target known B-cell-related transcription factors and NF-κB inhibitors. These findings provide evidence that deregulated miRNAs contribute to the loss of B-cell phenotype and NF-κB activation observed in this lymphoma.
Abstract: A hallmark of classical Hodgkin lymphoma (cHL) is the attenuation of B-cell transcription factors leading to global transcriptional reprogramming. The role of miRNAs (microRNAs) involved in this process is poorly studied. Therefore, we performed global miRNA expression profiling using RNA-seq on commonly used cHL cell lines, non-Hodgkin lymphoma cell lines and sorted normal CD77+ germinal centre B-cells as controls and characterized the cHL miRNome (microRNome). Among the 298 miRNAs expressed in cHL, 56 were significantly overexpressed and 23 downregulated (p < 0.05) compared to the controls. Moreover, we identified five miRNAs (hsa-miR-9-5p, hsa-miR-24-3p, hsa-miR-196a-5p, hsa-miR-21-5p, hsa-miR-155-5p) as especially important in the pathogenesis of this lymphoma. Target genes of the overexpressed miRNAs in cHL were significantly enriched (p < 0.05) in gene ontologies related to transcription factor activity. Therefore, we further focused on selected interactions with the SPI1 and ELF1 transcription factors attenuated in cHL and the NF-ĸB inhibitor TNFAIP3. We confirmed the interactions between hsa-miR-27a-5p:SPI1, hsa-miR-330-3p:ELF-1, hsa-miR-450b-5p:ELF-1 and hsa-miR-23a-3p:TNFAIP3, which suggest that overexpression of these miRNAs contributes to silencing of the respective genes. Moreover, by analyzing microdissected HRS cells, we demonstrated that these miRNAs are also overexpressed in primary tumor cells. Therefore, these miRNAs play a role in silencing the B-cell phenotype in cHL.