Refine
Year of publication
Language
- English (133)
Has Fulltext
- yes (133)
Is part of the Bibliography
- no (133)
Keywords
- Heavy-ion collisions (4)
- Diffraction (3)
- Elastic scattering (3)
- Beam Energy Scan (2)
- Chiral Magnetic Effect (2)
- Collectivity (2)
- Correlation (2)
- Polarization (2)
- RHIC (2)
- STAR (2)
Institute
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in √sNN = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in √sNN = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
Density fluctuations near the QCD critical point can be probed via an intermittency analysis in relativistic heavy-ion collisions. We report the first measurement of intermittency in Au+Au collisions at sNN−−−√ = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au+Au collisions and a decrease in the extracted scaling exponent (ν) from peripheral to central collisions. The ν is consistent with a constant for different collisions energies in the mid-central (10-40\%) collisions. Moreover, the ν in the 0-5\% most central Au+Au collisions exhibits a non-monotonic energy dependence that reaches a possible minimum around sNN−−−√ = 27 GeV. The physics implications on the QCD phase structure are discussed.
The differential cross section for 𝑍0 production, measured as a function of the boson’s transverse momentum (𝑝T), provides important constraints on the evolution of the transverse momentum dependent parton distribution functions (TMDs). The transverse single spin asymmetry (TSSA) of the 𝑍0 is sensitive to one of the polarized TMDs, the Sivers function, which is predicted to have the opposite sign in 𝑝 + 𝑝 → 𝑊 ∕𝑍 + 𝑋 from that which enters in semi-inclusive deep inelastic scattering. In this Letter, the STAR Collaboration reports the first measurement of the 𝑍0∕𝛾∗ differential cross section as a function of its 𝑝T in 𝑝+𝑝 collisions at a center-of-mass energy of 510 GeV, together with the 𝑍0∕𝛾∗ total cross section. We also report the measurement of 𝑍0∕𝛾∗ TSSA in transversely polarized 𝑝+𝑝 collisions at 510 GeV.
We report on the measurements of directed flow v1 and elliptic flow v2 for hadrons (π±, K ±, K0 S , p, φ, Λ and ) from Au+Au collisions at √sN N = 3 GeV and v2 for (π±, K ±, p and p) at 27 and 54.4 GeV with the STAR experiment. While at the two higher energy midcentral collisions the numberof-constituent-quark (NCQ) scaling holds, at 3 GeV the v2 at midrapidity is negative for all hadrons and the NCQ scaling is absent. In addition, the v1 slopes at midrapidity for almost all observed hadrons are found to be positive, implying dominant repulsive baryonic interactions. The features of negative v2 and positive v1 slope at 3 GeV can be reproduced with a baryonic mean-field in transport model calculations. These results imply that the medium in such collisions is likely characterized by baryonic interactions.
We report results on an elastic cross section measurement in proton–proton collisions at a center-of-mass energy √𝑠 = 510 GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range 0.23 ≤ −𝑡 ≤ 0.67 GeV2. This is the only measurement of the proton-proton elastic cross section in this 𝑡 range for collision energies above the Intersecting Storage Rings (ISR) and below the Large Hadron Collider (LHC) colliders. We find that a constant slope 𝐵 does not fit the data in the aforementioned 𝑡 range, and we obtain a much better fit using a second-order polynomial for 𝐵(𝑡). This is the first measurement below the LHC energies for which the non-constant behavior 𝐵(𝑡) is observed. The 𝑡 dependence of 𝐵 is also determined using six subintervals of 𝑡 in the STAR measured 𝑡 range, and is in good agreement with the phenomenological models. The measured elastic differential cross section d𝜎∕dt agrees well with the results obtained at √𝑠 = 540 GeV for proton–antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR 𝑡-range is 𝜎f id el = 462.1 ± 0.9(stat.) ± 1.1(syst.) ± 11.6(scale) 𝜇b.
The STAR Collaboration reports measurements of back-to-back azimuthal correlations of di-π0s produced at forward pseudorapidities (2.6<η<4.0) in p+p, p+Al, and p+Au collisions at a center-of-mass energy of 200 GeV. We observe a clear suppression of the correlated yields of back-to-back π0 pairs in p+Al and p+Au collisions compared to the p+p data. The observed suppression of back-to-back pairs as a function of event activity and transverse momentum suggests nonlinear gluon dynamics arising at high parton densities. The larger suppression found in p+Au relative to p+Al collisions exhibits a dependence of the saturation scale, Q2s, on the mass number, A. The suppression in high-activity p+Au collisions is consistent with theoretical predictions including gluon saturation effects.
The STAR Collaboration reports measurements of back-to-back azimuthal correlations of di-π0s produced at forward pseudorapidities (2.6<η<4.0) in p+p, p+Al, and p+Au collisions at a center-of-mass energy of 200 GeV. We observe a clear suppression of the correlated yields of back-to-back π0 pairs in p+Al and p+Au collisions compared to the p+p data. The observed suppression of back-to-back pairs as a function of transverse momentum suggests nonlinear gluon dynamics arising at high parton densities. The larger suppression found in p+Au relative to p+Al collisions exhibits a dependence of the saturation scale, Q2s, on the mass number, A. A linear scaling of the suppression with A1/3 is observed with a slope of −0.09 ± 0.01.
We report measurements of the longitudinal double-spin asymmetry, ALL, for inclusive jet and dijet production in polarized proton-proton collisions at midrapidity and center-of-mass energy s√ = 510 GeV, using the high luminosity data sample collected by the STAR experiment in 2013. These measurements complement and improve the precision of previous STAR measurements at the same center-of-mass energy that probe the polarized gluon distribution function at partonic momentum fraction 0.015 ≲x≲ 0.25. The dijet asymmetries are separated into four jet-pair topologies, which provide further constraints on the x dependence of the polarized gluon distribution function. These measurements are in agreement with previous STAR measurements and with predictions from current next-to-leading order global analyses. They provide more precise data at low dijet invariant mass that will better constraint the shape of the polarized gluon distribution function of the proton.
We report measurements of the longitudinal double-spin asymmetry, ALL, for inclusive jet and dijet production in polarized proton-proton collisions at midrapidity and center-of-mass energy s√ = 510 GeV, using the high luminosity data sample collected by the STAR experiment in 2013. These measurements complement and improve the precision of previous STAR measurements at the same center-of-mass energy that probe the polarized gluon distribution function at partonic momentum fraction 0.015 ≲x≲ 0.25. The dijet asymmetries are separated into four jet-pair topologies, which provide further constraints on the x dependence of the polarized gluon distribution function. These measurements are in agreement with previous STAR measurements and with predictions from current next-to-leading order global analyses. They provide more precise data at low dijet invariant mass that will better constraint the shape of the polarized gluon distribution function of the proton.