Refine
Year of publication
Language
- English (858)
Has Fulltext
- yes (858)
Is part of the Bibliography
- no (858)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- LHC (10)
- Particle and Resonance Production (9)
- Quarkonium (8)
- Charm Physics (6)
- Spectroscopy (6)
- Hadronic decays (5)
- QCD (5)
Institute
- Physik (854)
- Frankfurt Institute for Advanced Studies (FIAS) (207)
- Informatik (204)
- Informatik und Mathematik (3)
- Medizin (2)
The process 𝑒+𝑒−→𝜙𝜂′ has been studied for the first time in detail using data sample collected with the BESIII detector at the BEPCII collider at center of mass energies from 2.05 to 3.08 GeV. A resonance with quantum numbers 𝐽𝑃𝐶=1−− is observed with mass 𝑀=(2177.5±4.8(stat)±19.5(syst))MeV/𝑐2 and width Γ=(149.0±15.6(stat)±8.9(syst)) MeV with a statistical significance larger than 10𝜎, including systematic uncertainties. If the observed structure is identified with the 𝜙(2170), then the ratio of partial width between the 𝜙𝜂′ by BESIII and 𝜙𝜂 by BABAR is (ℬ𝑅𝜙𝜂Γ𝑅𝑒𝑒)/(ℬ𝑅𝜙𝜂′Γ𝑅𝑒𝑒)=0.23±0.10(stat)±0.18(syst), which is smaller than the prediction of the 𝑠¯𝑠𝑔 hybrid models by several orders of magnitude.
Using e+e− collision data samples with center-of-mass energies ranging from 2.000 to 2.644 GeV, collected by the BESIII detector at the BEPCII collider, and with a total integrated luminosity of 300 pb^{-1}, a partial-wave analysis is performed for the process e+e−→K+K−π0π0. The total Born cross sections for the process e+e−→K+K−π0π0, as well as the Born cross sections f or the subprocesses e+e−→ϕπ0π0, K+(1460)K−, K+1(1400)K−, K+1(1270)K− and K∗+(892)K∗−(892), are measured versus the center-of-mass energy. The corresponding results for e+e−→K+K−π0π0 and ϕπ0π0 are consistent with those of BaBar and have much improved this http URL analyzing the cross sections for the four subprocesses, K+(1460)K−, K+1(1400)K−, K+1(1270)K− and K∗+K∗−, a structure with mass M = (2126.5 ± 16.8 ± 12.4)~MeV/c^{2} and width Γ = (106.9 ± 32.1 ± 28.1)~MeV is observed with an overall statistical significance of 6.3 σ, although with very limited significance in the subprocesses e+e−→K+1(1270)K− and K∗+(892)K∗−(892). The resonant parameters of the observed structure suggest it can be identified with the ϕ(2170), thus the results provide valuable input to the internal nature of the ϕ(2170).
Using e+e− collision data samples with center-of-mass energies ranging from 2.000 to 2.644 GeV, collected by the BESIII detector at the BEPCII collider, and with a total integrated luminosity of 300 pb^{-1}, a partial-wave analysis is performed for the process e+e−→K+K−π0π0. The total Born cross sections for the process e+e−→K+K−π0π0, as well as the Born cross sections f or the subprocesses e+e−→ϕπ0π0, K+(1460)K−, K+1(1400)K−, K+1(1270)K− and K∗+(892)K∗−(892), are measured versus the center-of-mass energy. The corresponding results for e+e−→K+K−π0π0 and ϕπ0π0 are consistent with those of BaBar and have much improved this http URL analyzing the cross sections for the four subprocesses, K+(1460)K−, K+1(1400)K−, K+1(1270)K− and K∗+K∗−, a structure with mass M = (2126.5 ± 16.8 ± 12.4)~MeV/c^{2} and width Γ = (106.9 ± 32.1 ± 28.1)~MeV is observed with an overall statistical significance of 6.3 σ, although with very limited significance in the subprocesses e+e−→K+1(1270)K− and K∗+(892)K∗−(892). The resonant parameters of the observed structure suggest it can be identified with the ϕ(2170), thus the results provide valuable input to the internal nature of the ϕ(2170).
he process e+e−→pK0Sn¯K−+c.c. and its intermediate processes are studied for the first time, using data samples collected with the BESIII detector at BEPCII at center-of-mass energies of 3.773, 4.008, 4.226, 4.258, 4.358, 4.416, and 4.600 GeV, with a total integrated luminosity of 7.4 fb−1. The Born cross section of e+e−→pK0Sn¯K−+c.c. is measured at each center-of-mass energy, but no significant resonant structure in the measured cross-section line shape between 3.773 and 4.600 GeV is observed. No evident structure is detected in the pK−, nK0S, pK0S, nK+, pn¯, or K0SK− invariant mass distributions except for Λ(1520). The Born cross sections of e+e−→Λ(1520)n¯K0S+c.c. and e+e−→Λ(1520)p¯K++c.c. are measured, and the 90\% confidence level upper limits on the Born cross sections of e+e−→Λ(1520)Λ¯(1520) are determined at the seven center-of-mass energies.
Using an e+e− annihilation data sample corresponding to an integrated luminosity of 2.93fb−1 collected at the center-of-mass energy of 3.773\,GeV with the BESIII detector, we measure the absolute branching fractions of D+→ηηπ+, D+→ηπ+π0, and D0→ηπ+π− to be (2.96±0.24±0.13)×10−3, (2.23±0.15±0.11)×10−3, and (1.20±0.07±0.04)×10−3, respectively, where the first uncertainties are statistical and the second ones systematic. The D+→ηηπ+ decay is observed for the first time and the branching fractions of D+(0)→ηπ+π0(−) are measured with much improved precision. In addition we test for CP asymmetries in the separated charge-conjugate branching fractions; no evidence of CP violation is found.
We report on new measurements of Cabibbo-suppressed semileptonic D+s decays using 3.19 fb−1 of e+e− annihilation data sample collected at a center-of-mass energy of 4.178~GeV with the BESIII detector at the BEPCII collider. Our results include branching fractions B(D+s→K0e+νe)=(3.25±0.38(stat.)±0.16(syst.))×10−3 and B(D+s→K∗0e+νe)=(2.37±0.26(stat.)±0.20(syst.))×10−3 which are much improved relative to previous measurements, and the first measurements of the hadronic form-factor parameters for these decays. For D+s→K0e+νe, we obtain f+(0)=0.720±0.084(stat.)±0.013(syst.), and for D+s→K∗0e+νe, we find form-factor ratios rV=V(0)/A1(0)=1.67±0.34(stat.)±0.16(syst.) and r2=A2(0)/A1(0)=0.77±0.28(stat.)±0.07(syst.).
Using a data sample of 448.1×106 𝜓(3686) events collected at √𝑠=3.686 GeV with the BESIII detector at the Beijing Electron-Positron Collider II, we search for the rare decay 𝐽/𝜓→𝜙𝑒+𝑒− via 𝜓(3686)→𝜋+𝜋−𝐽/𝜓. No signal events are observed and the upper limit on the branching fraction is set to be ℬ(𝐽/𝜓→𝜙𝑒+𝑒−)<1.2×10−7 at the 90% confidence level, which is still about one order of magnitude higher than the Standard Model prediction.
Search for the reaction channel e⁺e⁻ → ηcηπ⁺π⁻ at center-of-mass energies from 4.23 to 4.60 GeV
(2021)
Using data collected with the BESIII detector operating at the Beijing Electron Positron Collider, we search for the process 𝑒+𝑒−→𝜂𝑐𝜂𝜋+𝜋−. The search is performed using five large datasets recorded at center-of-mass energies of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV. The 𝜂𝑐 meson is reconstructed in 16 exclusive decay modes. No signal is observed in the 𝜂𝑐 mass region at any center-of-mass energy. The upper limits on the reaction cross sections are determined to be 6.2, 10.8, 27.6, 22.6 and 23.7 pb at the 90% confidence level at the center-of-mass energies listed above.
A partial-wave analysis of the decay 𝐽/𝜓→𝐾+𝐾−𝜋0 has been made using (223.7±1.4)×106 𝐽/𝜓 events collected with the BESIII detector in 2009. The analysis, which is performed within the isobar-model approach, reveals contributions from 𝐾*2(1430)±, 𝐾*2(1980)± and 𝐾*4(2045)± decaying to 𝐾±𝜋0. The two latter states are observed in 𝐽/𝜓 decays for the first time. Two resonance signals decaying to 𝐾+𝐾− are also observed. These contributions cannot be reliably identified and their possible interpretations are discussed. The measured branching fraction 𝐵(𝐽/𝜓→𝐾+𝐾−𝜋0) of (2.88±0.01±0.12)×10−3 is more precise than previous results. Branching fractions for the reported contributions are presented as well. The results of the partial-wave analysis differ significantly from those previously obtained by BESII and BABAR.
We report on an analysis of the decay J/ψ→γπ0η′ using a sample of (1310.6±7.0)× 106 J/ψ events collected with the BESIII detector. We search for the CP-violating process ηc→π0η′ and a dark gauge boson U′ in J/ψ→U′η′, U′→γπ0, π0→γγ. No evidence of an ηc signal is observed in the π0η′ invariant-mass spectrum and the upper limit of the branching fraction is determined to be 7.2× 10−5 at the 90\% confidence level. We also find no evidence of U′ production and set upper limits at the 90\% confidence level on the product branching fraction B(J/ψ→U′η′)×B(U′→π0γ) in the range between (0.8−6.5)×10−7 for 0.2 ≤mU′≤2.1GeV/c2. In addition, we study the process J/ψ→ωη′ with ω→γπ0. The branching fraction of J/ψ→ωη′ is found to be (1.87±0.09±0.12)×10−4, where the first uncertainty is statistical and the second is systematic, with a precision that is improved by a factor of 1.4 over the previously published BESIII measurement.