Refine
Document Type
- Article (4)
- Conference Proceeding (1)
- Preprint (1)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Institute
- Physik (5)
A novel mechanism of H0 and strangelet production in hadronic interactions within the Gribov-Regge approach is presented. In contrast to traditional distillation approaches, here the production of multiple (strange) quark bags does not require large baryon densities or a QGP. The production cross section increases with center of mass energy. Rapidity and transverse momentum distributions of the H 0 are predicted for pp collisions at E_lab = 160 AGeV (SPS) and \sqrt s = 200 AGeV (RHIC). The predicted total H 0 multiplicities are of order of the Omega-baryon yield and can be accessed by the NA49 and the STAR experiments.
The physics of EPOS
(2013)
Evidence for hydrodynamical flow in AA or in pA collisons is to a large extent obtained from the observation of identified hadrons, such as pions, kaons, and protons. But much more information in particular about the late stage can be obtained by also considering unstable particles, which decay during the lifetime of the expanding hadronic matter. We therefore started to use EPOS3, a unified approach for pp, pA, and AA scattering, to investigate the production of stable and unstable particles.
The aim of this paper is to understand resonance production (and more generally particle production) for different collision systems, namely proton-proton (pp), proton-nucleus (pA), and nucleus-nucleus (AA) scattering at the LHC. We will investigate in particular particle yields and ratios versus multiplicity, using the same multiplicity definition for the three different systems, in order to analyse in a compact way the evolution of particle production with the system size and the origin of a very different system size dependence of the different particles.
The production of strange pentaquark states (e.g., Theta baryons and Ξ−− states) in hadronic interactions within a Gribov–Regge approach is explored. In this approach the Θ+(1540) and the Ξ are produced by disintegration of remnants formed by the exchange of pomerons between the two protons. We predict the rapidity and transverse momentum distributions as well as the 4π multiplicity of the Θ+, Ξ−−, Ξ−, Ξ0 and Ξ+ for s=17 GeV (SPS) and 200 GeV (RHIC). For both energies more than 10−3 Θ+ and more than 10−5 Ξ per pp event should be observed by the present experiments.
The KASCADE-Grande experiment has significantly contributed to the current knowledge about the energy spectrum and composition of cosmic rays for energies between the knee and the ankle. Meanwhile, post-LHC versions of the hadronic interaction models are available and used to interpret the entire data set of KASCADE-Grande. In addition, a new, combined analysis of both arrays, KASCADE and Grande, was developed significantly increasing the accuracy of the shower observables. First results of the new analysis with the entire data set of the KASCADE-Grande experiment will be the focus of this contribution.