Refine
Year of publication
Document Type
- Article (29)
- Doctoral Thesis (1)
Has Fulltext
- yes (30)
Is part of the Bibliography
- no (30)
Keywords
- Bone density (4)
- Magnetic resonance imaging (4)
- Osteoporosis (4)
- Computed tomography (3)
- Spine (3)
- Bone diseases (2)
- CT dual-energy computed tomography (2)
- Cancer (2)
- DSM (2)
- Hepatocellular carcinoma (2)
Institute
- Medizin (30)
Rationale and Objectives: Lumbar disk degeneration is a common condition contributing significantly to back pain. The objective of the study was to evaluate the potential of dual-energy CT (DECT)-derived collagen maps for the assessment of lumbar disk degeneration.
Patients and Methods: We conducted a retrospective analysis of 127 patients who underwent dual-source DECT and MRI of the lumbar spine between 07/2019 and 10/2022. The level of lumbar disk degeneration was categorized by three radiologists as follows: no/mild (Pfirrmann 1&2), moderate (Pfirrmann 3&4), and severe (Pfirrmann 5). Recall (sensitivity) and accuracy of DECT collagen maps were calculated. Intraclass correlation coefficient (ICC) was used to evaluate inter-reader reliability. Subjective evaluations were performed using 5-point Likert scales for diagnostic confidence and image quality.
Results: We evaluated a total of 762 intervertebral disks from 127 patients (median age, 69.7 (range, 23.0–93.7), female, 56). MRI identified 230 non/mildly degenerated disks (30.2%), 484 moderately degenerated disks (63.5%), and 48 severely degenerated disks (6.3%). DECT collagen maps yielded an overall accuracy of 85.5% (1955/2286). Recall (sensitivity) was 79.3% (547/690) for the detection of no/mild lumbar disk degeneration, 88.7% (1288/1452) for the detection of moderate disk degeneration, and 83.3% (120/144) for the detection of severe disk degeneration (ICC = 0.9). Subjective evaluations of DECT collagen maps showed high diagnostic confidence (median 4) and good image quality (median 4).
Conclusion: The use of DECT collagen maps to distinguish different stages of lumbar disk degeneration may have clinical significance in the early diagnosis of disk-related pathologies in patients with contraindications for MRI or in cases of unavailability of MRI.
Rationale and Objectives: Bone non-union is a serious complication of distal radius fractures (DRF) that can result in functional limitations and persistent pain. However, no accepted method has been established to identify patients at risk of developing bone non-union yet. This study aimed to compare various CT-derived metrics for bone mineral density (BMD) assessment to identify predictive values for the development of bone non-union.
Materials and Methods: CT images of 192 patients with DRFs who underwent unenhanced dual-energy CT (DECT) of the distal radius between 03/2016 and 12/2020 were retrospectively identified. Available follow-up imaging and medical health records were evaluated to determine the occurrence of bone non-union. DECT-based BMD, trabecular Hounsfield unit (HU), cortical HU and cortical thickness ratio were measured in normalized non-fractured segments of the distal radius.
Results: Patients who developed bone non-union were significantly older (median age 72 years vs. 54 years) and had a significantly lower DECT-based BMD (median 68.1 mg/cm3 vs. 94.6 mg/cm3, p < 0.001). Other metrics (cortical thickness ratio, cortical HU, trabecular HU) showed no significant differences. ROC and PR curve analyses confirmed the highest diagnostic accuracy for DECT-based BMD with an area under the curve (AUC) of 0.83 for the ROC curve and an AUC of 0.46 for the PR curve. In logistic regression models, DECT-based BMD was the sole metric significantly associated with bone non-union.
Conclusion: DECT-derived metrics can accurately predict bone non-union in patients who sustained DRF. The diagnostic performance of DECT-based BMD is superior to that of HU-based metrics and cortical thickness ratio.
The objective of this pilot clinical study was to assess the safety, technical feasibility, pharmacokinetic (PK) profile and tumour response of DC Bead™ with irinotecan (DEBIRI™) delivered by intra-arterial embolisation for the treatment of metastatic colorectal cancer. Eleven patients with unresectable liver metastases from CRC, tumour burden <30% of liver volume, adequate haematological, liver and renal function, performance status of <2 were included in this study. Patients received up to 4 sessions of TACE with DEBIRI at 3-week intervals. Feasibility of the procedure, safety and tumour response were assessed after each cycle. PK was measured after the first cycle. Patients were followed up to 24 weeks. Only mild to moderate adverse events were observed. DEBIRI is a technically feasibile procedure; no technical complications were observed. Average Cmax for irinotecan and SN-38 was 194 ng/ml and 16.7 ng/ml, respectively, with average t½ of 4.6 h and 12.4 h following administration of DEBIRI. Best overall response during the study showed disease control in 9 patients (2 patients with partial response and 7 with stable disease, overall response rate of 18%). Our study shows that transarterial chemoembolisation with irinotecan-loaded DC beads (DEBIRI) is safe, technically feasible and effective with a good PK profile.
Objectives: To determine the diagnostic accuracy of dual-energy CT (DECT) virtual noncalcium (VNCa) reconstructions for assessing thoracic disk herniation compared to standard grayscale CT. Methods: In this retrospective study, 87 patients (1131 intervertebral disks; mean age, 66 years; 47 women) who underwent third-generation dual-source DECT and 3.0-T MRI within 3 weeks between November 2016 and April 2020 were included. Five blinded radiologists analyzed standard DECT and color-coded VNCa images after a time interval of 8 weeks for the presence and degree of thoracic disk herniation and spinal nerve root impingement. Consensus reading of independently evaluated MRI series served as the reference standard, assessed by two separate experienced readers. Additionally, image ratings were carried out by using 5-point Likert scales. Results: MRI revealed a total of 133 herniated thoracic disks. Color-coded VNCa images yielded higher overall sensitivity (624/665 [94%; 95% CI, 0.89–0.96] vs 485/665 [73%; 95% CI, 0.67–0.80]), specificity (4775/4990 [96%; 95% CI, 0.90–0.98] vs 4066/4990 [82%; 95% CI, 0.79–0.84]), and accuracy (5399/5655 [96%; 95% CI, 0.93–0.98] vs 4551/5655 [81%; 95% CI, 0.74–0.86]) for the assessment of thoracic disk herniation compared to standard CT (all p < .001). Interrater agreement was excellent for VNCa and fair for standard CT (ϰ = 0.82 vs 0.37; p < .001). In addition, VNCa imaging achieved higher scores regarding diagnostic confidence, image quality, and noise compared to standard CT (all p < .001). Conclusions: Color-coded VNCa imaging yielded substantially higher diagnostic accuracy and confidence for assessing thoracic disk herniation compared to standard CT.
Background: This prospective randomized trial is designed to compare the performance of conventional transarterial chemoembolization (cTACE) using Lipiodol-only with additional use of degradable starch microspheres (DSM) for hepatocellular carcinoma (HCC) in BCLC-stage-B based on metric tumor response. Methods: Sixty-one patients (44 men; 17 women; range 44–85) with HCC were evaluated in this IRB-approved HIPPA compliant study. The treatment protocol included three TACE-sessions in 4-week intervals, in all cases with Mitomycin C as a chemotherapeutic agent. Multiparametric magnetic resonance imaging (MRI) was performed prior to the first and 4 weeks after the last TACE. Two treatment groups were determined using a randomization sheet: In 30 patients, TACE was performed using Lipiodol only (group 1). In 31 cases Lipiodol was combined with DSMs (group 2). Response according to tumor volume, diameter, mRECIST criteria, and the development of necrotic areas were analyzed and compared using the Mann–Whitney-U, Kruskal–Wallis-H-test, and Spearman-Rho. Survival data were analyzed using the Kaplan–Meier estimator. Results: A mean overall tumor volume reduction of 21.45% (± 62.34%) was observed with an average tumor volume reduction of 19.95% in group 1 vs. 22.95% in group 2 (p = 0.653). Mean diameter reduction was measured with 6.26% (± 34.75%), for group 1 with 11.86% vs. 4.06% in group 2 (p = 0.678). Regarding mRECIST criteria, group 1 versus group 2 showed complete response in 0 versus 3 cases, partial response in 2 versus 7 cases, stable disease in 21 versus 17 cases, and progressive disease in 3 versus 1 cases (p = 0.010). Estimated overall survival was in mean 33.4 months (95% CI 25.5–41.4) for cTACE with Lipiosol plus DSM, and 32.5 months (95% CI 26.6–38.4), for cTACE with Lipiodol-only (p = 0.844), respectively. Conclusions: The additional application of DSM during cTACE showed a significant benefit in tumor response according to mRECIST compared to cTACE with Lipiodol-only. No benefit in survival time was observed.
Zielsetzung: Die Evaluation der transarteriellen Chemoembolisation (TACE) bei nicht resektablen primären (CCC) und sekundären (Lebermetastasen verschiedener Primärtumoren) Lebermalignomen anhand des lokalen Tumoransprechens, des klinischen Ansprechens und der Überlebensdaten. Material und Methodik: Im Zeitraum vom 1999 bis 2009 wurden in unserem Tumorzentrum 898 Patienten mit CCC und Lebermetastasen mittels TACE behandelt. Die behandelten Tumorentitäten waren im Einzelnen das cholangiozelluläre Karzinom (CCC) (n=46; 5,1%) sowie Lebermetastasen des: kolorektalen Karzinoms (CRC) (n=463; 51,7%), Mammakarzinoms (n=208; 23,2%), Aderhautmelanoms (n=33; 3,7%), Nierenzellkarzinoms (n=22; 2,5%), neuroendokrinen Karzinoms (NET) (n=48; 5,4%), Magenkarzinoms (n=25; 2,8%), Ovarialkarzinoms (n=30; 3,3%) und nicht-kleinzelligen Bronchialkarzinoms (NSCLC) (n=21; 2,3%). Als Zytostatika wurden Mitomycin C (8 mg/m²), Gemcitabine (1000 mg/m²), Irinotecan (150 mg/m²) und Cisplatin (60 mg/m²) verwendet. Als Embolisat wurden Lipiodol und Microsphären (EmboCept®) verwendet. Mindestens drei TACE Sitzungen pro Patient wurden in vierwöchigen Abständen ambulant durchgeführt. Das radiologische Tumoransprechen wurde mittels Magnetresonanztomographie (MRT) und/oder Computertomographie (CT) bestimmt und nach den RECIST-Kriterien klassifiziert. Das klinische Ansprechen wurde im Verlauf der Behandlung in neoadjuvant, palliativ und symptomatisch eingeteilt. Die Überlebensdaten wurden nach der Kaplan-Meier-Methode berechnet. Ergebnisse: Die Mindestzahl der durchgeführten TACE war drei. Bei 46 Patienten mit CCC wurden bei 11% PR, bei 60,7% SD und bei 28,3% PD bei einer medianen Überlebenszeit von 14,5 Monaten dokumentiert. 2,2% der Patienten wurden neoadjuvant, 73,9% palliativ und 23,9% symptomatisch behandelt. Bei 463 Patienten mit Lebermetastasen des CRC wurden bei 14,7% PR, bei 48,2% SD und bei 37,1% PD dokumentiert. Die mediane Überlebenszeit lag bei 14 Monaten. 12,9% der Patienten wurden neoadjuvant, 72,4% palliativ und 14,7% symptomatisch behandelt. Bei 208 Patienten mit Lebermetastasen des Mammakarzinoms wurden bei 13% PR, bei 50,5% SD und bei 36,5% PD bei einer medianen Überlebenszeit von 18,5 Monaten dokumentiert. Die Patienten wurden zu 18,75% neoadjuvant, zu 15,38% symptomatisch und zu 65,87% palliativ behandelt. Bei Patienten mit Lebermetastasen des Aderhautmelanoms wurden bei 15,2% PR, bei 42,4% SD und bei 42,4% PD dokumentiert. Die mediane Überlebenszeit betrug 18 Monate. Die klinische Situation war zu 3% neoadjuvant, zu 24,2% symptomatisch und zu 72,8% palliativ. Bei Patienten mit Lebermetastasen des Nierenzellkarzinoms wurden bei 13,7% PR, bei 59% SD und bei 27,3% PD bei einer medianen Überlebenszeit von 6,6 Monaten dokumentiert. Die klinische Situation war zu 81,8% palliativ und zu 18,2% symptomatisch. Bei Patienten mit Lebermetastasen des NET wurden bei 18,8% PR, bei 52,1% SD und bei 29,1% PD dokumentiert. 81,2% der Patienten wurden palliativ und 18,8% symptomatisch behandelt. Patienten mit Lebermetastasen des Magenkarzinoms hatten eine mediane Überlebenszeit von 10,5 Monaten. SD wurde bei 60% und PD bei 40% dokumentiert. 76% der Patienten wurden palliativ und 24% symptomatisch behandelt. Bei den Patientinnen mit Lebermetastasen des Ovarialkarzinoms wurden bei 20% PR, bei 26,7% SD und bei 53,3% PD dokumentiert. Die mediane Überlebenszeit betrug 23,7 Monate bei folgendem klinischen Ansprechen: 13,3% symptomatisch und 86,7% palliativ. Für Patienten mit Lebermetastasen des NSCLC wurden bei 14,3% PR, bei 47,6% SD und bei 38,1% PD bei medianer Überlebenszeit von 11,7 Monaten dokumentiert. Die Patienten wurden wie folgend behandelt: 81% palliativ und 19% symptomatisch. Schlussfolgerung: TACE bei primären (CCC) und sekundären (Lebermetastasen verschiedener Primärtumoren) Lebermalignome stellt ein gut verträgliches, minimal invasives, lokoregionales Verfahren dar, das zu einem guten Tumoransprechen, Lebensverlängerung sowie Verminderung der Symptomatik führt.
Background: Evaluation of automated attenuation-based tube potential selection and its impact on image quality and radiation dose in CT (computed tomography) examinations for cancer staging.
Methods: A total of 110 (59 men, 51 women) patients underwent chest-abdomen-pelvis CT examinations; 55 using a fixed tube potential of 120 kV/current of 210 Reference mAs (using CareDose4D), and 55 using automated attenuation-based tube potential selection (CAREkV) also using a current of 210 Reference mAs. This evaluation was performed as a single-centre, observer-blinded retrospective analysis. Image quality was assessed by two readers in consensus. Attenuation, image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured or calculated for objective image evaluation. For the evaluation of radiation exposure, dose-length-product (DLP) values were compared and Size-specific dose estimates (SSDE) values were calculated.
Results: Diagnostic image quality was obtained from all patients. The median DLP (703.5 mGy · cm, range 390–2203 mGy · cm) was 7.9% lower when using the algorithm compared with the standard 120 kV protocol (median 756 mGy · cm, range 345–2267 mGy · cm). A reduction in potential to 100 kV occurred in 32 cases; therefore, these patients received significantly lower radiation exposure compared with the 120 kV protocol.
Conclusion: Automated attenuation-based tube potential selection produces good diagnostic image quality in chest-abdomen-pelvis CT and reduces the patient’s overall radiation dose by 7.9% compared to the standard 120 kV protocol.
Objective: To investigate the accuracy, efficiency and radiation dose of a novel laser navigation system (LNS) compared to those of free-handed punctures on computed tomography (CT).
Materials and methods: Sixty punctures were performed using a phantom body to compare accuracy, timely effort, and radiation dose of the conventional free-handed procedure to those of the LNS-guided method. An additional 20 LNS-guided interventions were performed on another phantom to confirm accuracy. Ten patients subsequently underwent LNS-guided punctures.
Results: The phantom 1-LNS group showed a target point accuracy of 4.0 ± 2.7 mm (freehand, 6.3 ± 3.6 mm; p = 0.008), entrance point accuracy of 0.8 ± 0.6 mm (freehand, 6.1 ± 4.7 mm), needle angulation accuracy of 1.3 ± 0.9° (freehand, 3.4 ± 3.1°; p < 0.001), intervention time of 7.03 ± 5.18 minutes (freehand, 8.38 ± 4.09 minutes; p = 0.006), and 4.2 ± 3.6 CT images (freehand, 7.9 ± 5.1; p < 0.001). These results show significant improvement in 60 punctures compared to freehand. The phantom 2-LNS group showed a target point accuracy of 3.6 ± 2.5 mm, entrance point accuracy of 1.4 ± 2.0 mm, needle angulation accuracy of 1.0 ± 1.2°, intervention time of 1.44 ± 0.22 minutes, and 3.4 ± 1.7 CT images. The LNS group achieved target point accuracy of 5.0 ± 1.2 mm, entrance point accuracy of 2.0 ± 1.5 mm, needle angulation accuracy of 1.5 ± 0.3°, intervention time of 12.08 ± 3.07 minutes, and used 5.7 ± 1.6 CT-images for the first experience with patients.
Conclusion: Laser navigation system improved accuracy, duration of intervention, and radiation dose of CT-guided interventions.
BACKGROUND: Evaluation of latest generation automated attenuation-based tube potential selection (ATPS) impact on image quality and radiation dose in contrast-enhanced chest-abdomen-pelvis computed tomography examinations for gynaecologic cancer staging.
METHODS: This IRB approved single-centre, observer-blinded retrospective study with a waiver for informed consent included a total of 100 patients with contrast-enhanced chest-abdomen-pelvis CT for gynaecologic cancer staging. All patients were examined with activated ATPS for adaption of tube voltage to body habitus. 50 patients were scanned on a third-generation dual-source CT (DSCT), and another 50 patients on a second-generation DSCT. Predefined image quality setting remained stable between both groups at 120 kV and a current of 210 Reference mAs. Subjective image quality assessment was performed by two blinded readers independently. Attenuation and image noise were measured in several anatomic structures. Signal-to-noise ratio (SNR) was calculated. For the evaluation of radiation exposure, CT dose index (CTDIvol) values were compared.
RESULTS: Diagnostic image quality was obtained in all patients. The median CTDIvol (6.1 mGy, range 3.9-22 mGy) was 40 % lower when using the algorithm compared with the previous ATCM protocol (median 10.2 mGy · cm, range 5.8-22.8 mGy). A reduction in potential to 90 kV occurred in 19 cases, a reduction to 100 kV in 23 patients and a reduction to 110 kV in 3 patients of our experimental cohort. These patients received significantly lower radiation exposure compared to the former used protocol.
CONCLUSION: Latest generation automated ATPS on third-generation DSCT provides good diagnostic image quality in chest-abdomen-pelvis CT while average radiation dose is reduced by 40 % compared to former ATPS protocol on second-generation DSCT.
Background: Computed tomography (CT) low-dose (LD) imaging is used to lower radiation exposure, especially in vascular imaging; in current literature, this is mostly on latest generation high-end CT systems.
Purpose: To evaluate the effects of reduced tube current on objective and subjective image quality of a 15-year-old 16-slice CT system for pulmonary angiography (CTPA).
Material and Methods: CTPA scans from 60 prospectively randomized patients (28 men, 32 women) were examined in this study on a 15-year-old 16-slice CT scanner system. Standard CT (SD) settings were 100 kV and 150 mAs, LD settings were 100 kV and 50 mAs. Attenuation of the pulmonary trunk, various anatomic landmarks, and image noise were quantitatively measured; contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) were calculated. Three independent blinded radiologists subjectively rated each image series using a 5-point grading scale.
Results: CT dose index (CTDI) in the LD series was 66.46% lower compared to the SD settings (2.49 ± 0.55 mGy versus 7.42 ± 1.17 mGy). Attenuation of the pulmonary trunk showed similar results for both series (SD 409.55 ± 91.04 HU; LD 380.43 HU ± 93.11 HU; P = 0.768). Subjective image analysis showed no significant differences between SD and LD settings regarding the suitability for detection of central and peripheral PE (central SD/LD, 4.88; intra-class correlation coefficients [ICC], 0.894/4.83; ICC, 0.745; peripheral SD/LD, 4.70; ICC, 0.943/4.57; ICC, 0.919; all P > 0.4).
Conclusion: The LD protocol, on a 15-year-old CT scanner system without current high-end hardware or post-processing tools, led to a dose reduction of approximately 67% with similar subjective image quality and delineation of central and peripheral pulmonary arteries.