Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- GM maize (1)
- Genetically engineered carotenoid biosynthesis (1)
- metabolomics (1)
- pathway regulation (1)
- proteomics (1)
- transcriptomics (1)
Institute
Flower color is an important characteristic that determines the commercial value of ornamental plants. Gentian flowers occur in a limited range of colors because this species is not widely cultivated as a cut flower. Gentiana lutea L. var. aurantiaca (abbr, aurantiaca) is characterized by its orange flowers, but the specific pigments responsible for this coloration are unknown. We therefore investigated the carotenoid and flavonoid composition of petals during flower development in the orange-flowered gentian variety of aurantiaca and the yellow-flowered variety of G. lutea L. var. lutea (abbr, lutea). We observed minor varietal differences in the concentration of carotenoids at the early and final stages, but only aurantiaca petals accumulated pelargonidin glycosides, whereas these compounds were not found in lutea petals. We cloned and sequenced the anthocyanin biosynthetic gene fragments from petals, and analyzed the expression of these genes in the petals of both varieties to determine the molecular mechanisms responsible for the differences in petal color. Comparisons of deduced amino acid sequences encoded by the isolated anthocyanin cDNA fragments indicated that chalcone synthase (CHS), chalcone isomerase (CHI), anthocyanidin synthase 1 (ANS1) and ANS2 are identical in both aurantiaca and lutea varieties whereas minor amino acid differences of the deduced flavonone 3-hydroxylase (F3H) and dihydroflavonol 4-reductase (DFR) between both varieties were observed. The aurantiaca petals expressed substantially higher levels of transcripts representing CHS, F3H, DFR, ANS and UDP-glucose:flavonoid-3-O-glucosyltransferase genes, compared to lutea petals. Pelargonidin glycoside synthesis in aurantiaca petals therefore appears to reflect the higher steady-state levels of pelargonidin synthesis transcripts. Moreover, possible changes in the substrate specificity of DFR enzymes may represent additional mechanisms for producing red pelargonidin glycosides in petals of aurantiaca. Our report describing the exclusive accumulation of pelargonidin glycosides in aurantiaca petals may facilitate the modification of gentian flower color by the production of red anthocyanins.
The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1) gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity.
The aim of this study was to assess whether endosperm-specific carotenoid biosynthesis influenced core metabolic processes in maize embryo and endosperm and how global seed metabolism adapted to this expanded biosynthetic capacity. Although enhancement of carotenoid biosynthesis was targeted to the endosperm of maize kernels, a concurrent up-regulation of sterol and fatty acid biosynthesis in the embryo was measured. Targeted terpenoid analysis, and non-targeted metabolomic, proteomic, and transcriptomic profiling revealed changes especially in carbohydrate metabolism in the transgenic line. In-depth analysis of the data, including changes of metabolite pools and increased enzyme and transcript concentrations, gave a first insight into the metabolic variation precipitated by the higher up-stream metabolite demand by the extended biosynthesis capacities for terpenoids and fatty acids. An integrative model is put forward to explain the metabolic regulation for the increased provision of terpenoid and fatty acid precursors, particularly glyceraldehyde 3-phosphate and pyruvate or acetyl-CoA from imported fructose and glucose. The model was supported by higher activities of fructokinase, glucose 6-phosphate isomerase, and fructose 1,6-bisphosphate aldolase indicating a higher flux through the glycolytic pathway. Although pyruvate and acetyl-CoA utilization was higher in the engineered line, pyruvate kinase activity was lower. A sufficient provision of both metabolites may be supported by a by-pass in a reaction sequence involving phosphoenolpyruvate carboxylase, malate dehydrogenase, and malic enzyme.