Refine
Year of publication
Document Type
- Preprint (63)
- Article (52)
- Conference Proceeding (3)
- Doctoral Thesis (1)
- Part of Periodical (1)
Language
- English (120)
Has Fulltext
- yes (120)
Is part of the Bibliography
- no (120)
Keywords
- Heavy-ion collisions (4)
- Diffraction (3)
- Beam Energy Scan (2)
- Chiral Magnetic Effect (2)
- Elastic scattering (2)
- Anti-kaon–nucleon physics (1)
- B-slope (1)
- Baryonic resonances (1)
- Beam energy scan (1)
- Charged-particle multiplicity (1)
Institute
The study of the electromagnetic structure of hadrons plays an important role in understanding the nature of matter. In particular the emission of lepton pairs out of the hot and dense collision zone in heavy-ion reactions is a promising probe to investigate in-medium properties of hadrons and in general the properties of matter under such extreme conditions. The first experimental observation of an enhanced di-electron yield in the invariant-mass region 0:3 - 0:7 GeV/c2 in p+Be collisions at 4:9 GeV/u beam energy [2] was announced by the DLS collaboration [1]. Recent results of the HADES collaboration show a moderate enhancement above n Dalitz decay contributions for 12C+12C at 1 and 2 GeV/u [3, 4] confirming the DLS results. There are several theoretical explanations of this observation, most of them focusing on possible in-medium modifications of the properties of vector mesons. At low beam energies the question whether the observed excess is related to any in-medium effects remains open because of uncertainties in the description of elementary di-electron sources. In this work the di-electron production in p+p and d+p reactions at a kinetic beam energy of 1:25 GeV/u measured by the HADES spectrometer is discussed. At Ekin = 1:25 GeV/u, i.e. below the n meson production threshold in proton-proton reactions, the delta Dalitz decay is expected to be the most abundant source above the pi 0 Dalitz decay region. The observed large difference in di-electron production in p+p and d+p collisions suggests that di-electron production in the d+p system is dominated by the n+p interaction. In order to separate delta Dalitz decays and np bremsstrahlung the di-electron yield observed in p+p and n+p reactions, both measured at the same beam energy, has been compared. The main interest here is the investigation of iso-spin effects in baryonic resonance excitations and the off-shell production of vector mesons [5]. We indeed observe a large difference in di-electron production in p+p and n+p reactions. Results of these studies will be compared to recent calculations. We will also present our experimentally defined cocktail for heavy-ion data. At much higher beam energies experimental results of the CERES [6] and NA60 [7] collaborations also show an enhancement in the invariant mass region 0:3 - 0:7 GeV/c2, in principle similar to the situation in DLS. A strong excess of lepton pairs observed by recent high energy heavy-ion dilepton experiments hint to a strong influence of baryons, however no data exist at highly compressed baryonic matter, achievable in heavy-ion collisions from 8 - 45 GeV/u beam energy. These conditions would allow to study the expected restoration of chiral symmetry by measuring in-medium modifications of hadronic properties, an experimental program which is foreseen by the future CBM experiment at FAIR. The experimental challenge is to suppress the large physical background on the one hand and to provide a clean identification of electrons on the other hand. In this work, strategies to reduce the combinatorial background in electron pair measurements with the CBM detector are discussed. The main goal is to study the feasibility of effectively reducing combinatorial background with the currently foreseen experimental setup, which does not provide electron identification in front of the magnetic field.
Electromagnetic calorimeter (ECAL) is being developed to complement dilepton spectrometer HADES. ECAL will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 AGeV on the beam of future accelerator SIS100@FAIR. We will report results of the last beam test with quasi-monoenergetic photons carried out in MAMI facility at Johannes Gutenberg Universität Mainz.
Measurement of cold nuclear matter effects for inclusive J/ψ in p+Au collisions at √sNN = 200 GeV
(2022)
Measurement by the STAR experiment at RHIC of the cold nuclear matter (CNM) effects experienced by inclusive J/ψ at mid-rapidity in 0-100% p+Au collisions at √sNN = 200 GeV is presented. Such effects are quantified utilizing the nuclear modification factor, RpAu, obtained by taking a ratio of J/ψ yield in p+Au collisions to that in p+p collisions scaled by the number of binary nucleon-nucleon collisions. The differential J/ψ yield in both p+p and p+Au collisions is measured through the dimuon decay channel, taking advantage of the trigger capability provided by the Muon Telescope Detector in the RHIC 2015 run. Consequently, the J/ψ RpAu is derived within the transverse momentum (pT) range of 0 to 10 GeV/c. A suppression of approximately 30% is observed for pT < 2 GeV/c, while J/ψ RpAu becomes compatible with unity for pT greater than 3 GeV/c, indicating the J/ψ yield is minimally affected by the CNM effects at high pT. Comparison to a similar measurement from 0-20% central Au+Au collisions reveals that the observed strong J/ψ suppression above 3 GeV/c is mostly due to the hot medium effects, providing strong evidence for the formation of the quark-gluon plasma in these collisions. Several model calculations show qualitative agreement with the measured J/ψ RpAu, while their agreement with the J/ψ yields in p+p and p+Au collisions is worse.
We report on the measurements of directed flow v1 and elliptic flow v2 for hadrons (π±, K ±, K0 S , p, φ, Λ and ) from Au+Au collisions at √sN N = 3 GeV and v2 for (π±, K ±, p and p) at 27 and 54.4 GeV with the STAR experiment. While at the two higher energy midcentral collisions the numberof-constituent-quark (NCQ) scaling holds, at 3 GeV the v2 at midrapidity is negative for all hadrons and the NCQ scaling is absent. In addition, the v1 slopes at midrapidity for almost all observed hadrons are found to be positive, implying dominant repulsive baryonic interactions. The features of negative v2 and positive v1 slope at 3 GeV can be reproduced with a baryonic mean-field in transport model calculations. These results imply that the medium in such collisions is likely characterized by baryonic interactions.
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in √sNN = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in √sNN = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
New measurements of directed flow for charged hadrons, characterized by the Fourier coefficient v1, are presented for transverse momenta pT, and centrality intervals in Au+Au collisions recorded by the STAR experiment for the center-of-mass energy range √sN N = 7.7–200 GeV. The measurements underscore the importance of momentum conservation, and the characteristic dependencies on √sN N , centrality and pT are consistent with the expectations of geometric fluctuations generated in the initial stages of the collision, acting in concert with a hydrodynamic-like expansion. The centrality and pT dependencies of veven 1 , as well as an observed similarity between its excitation function and that for v3, could serve as constraints for initial-state models. The veven 1 excitation function could also provide an important supplement to the flow measurements employed for precision extraction of the temperature dependence of the specific shear viscosity.
We present a measurement of inclusive J /ψ production at mid-rapidity (|y| < 1) in p+p collisions at a center-of-mass energy of √s = 200 GeV with the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The differential production cross section for J /ψ as a function of transverse momentum (p T ) for 0 < p T < 14 GeV/c and the total cross section are reported and compared to calculations from the color evaporation model and the non-relativistic Quantum Chromodynamics model. The dependence of J /ψ relative yields in three p T intervals on charged-particle multiplicity at mid-rapidity is measured for the first time in p+p collisions at √s = 200 GeV and compared with that measured at √s = 7 TeV, PYTHIA8 and EPOS3 Monte Carlo generators, and the Percolation model prediction.
We present data on charged kaons (K±) and ϕ mesons in Au(1.23A GeV)+Au collisions. It is the first simultaneous measurement of K− and ϕ mesons in central heavy-ion collisions below a kinetic beam energy of 10A GeV. The ϕ/K− multiplicity ratio is found to be surprisingly high with a value of 0.52±0.16 and shows no dependence on the centrality of the collision. Consequently, the different slopes of the K+ and K− transverse-mass spectra can be explained solely by feed-down, which substantially softens the spectra of K− mesons. Hence, in contrast to the commonly adapted argumentation in literature, the different slopes do not necessarily imply diverging freeze-out temperatures of K+ and K− mesons caused by different couplings to baryons.
Partial wave analysis of the reaction p(3.5 GeV) + p → pK +Λ to search for the "ppK−" bound state
(2015)
Employing the Bonn–Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5 GeV) + p → pK +Λ. This reaction might contain information about the kaonic cluster “ppK −” (with quantum numbers J P = 0− and total isospin I = 1/2) via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical KNN (or, specifically “ppK −”) cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a KNN cluster. At a confidence level of CLs = 95% such a cluster cannot contribute more than 2–12% to the total cross section with a pK +Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.
We present measurements of exclusive ensuremathπ+,0 and η production in pp reactions at 1.25GeV and 2.2GeV beam kinetic energy in hadron and dielectron channels. In the case of π+ and π0 , high-statistics invariant-mass and angular distributions are obtained within the HADES acceptance as well as acceptance-corrected distributions, which are compared to a resonance model. The sensitivity of the data to the yield and production angular distribution of Δ (1232) and higher-lying baryon resonances is shown, and an improved parameterization is proposed. The extracted cross-sections are of special interest in the case of pp → pp η , since controversial data exist at 2.0GeV; we find \ensuremathσ=0.142±0.022 mb. Using the dielectron channels, the π0 and η Dalitz decay signals are reconstructed with yields fully consistent with the hadronic channels. The electron invariant masses and acceptance-corrected helicity angle distributions are found in good agreement with model predictions.