Refine
Document Type
- Article (2)
- Conference Proceeding (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
- Physik (3)
We present first results of a recently started lattice QCD investigation of antiheavy-antiheavy-light-light tetraquark systems including scattering interpolating operators in correlation functions both at the source and at the sink. In particular, we discuss the importance of such scattering interpolating operators for a precise computation of the low-lying energy levels. We focus on the b¯b¯ud four-quark system with quantum numbers I(JP)=0(1+), which has a ground state below the lowest meson-meson threshold. We carry out a scattering analysis using Lüscher's method to extrapolate the binding energy of the corresponding QCD-stable tetraquark to infinite spatial volume. Our calculation uses clover u, d valence quarks and NRQCD b valence quarks on gauge-link ensembles with HISQ sea quarks that were generated by the MILC collaboration.
We present our recent results on antiheavy-antiheavy-light-light tetraquark systems using lattice QCD. Our study of the b¯b¯us four-quark system with quantum numbers JP=1+ and the b¯c¯ud four-quark systems with I(JP)=0(0+) and I(JP)=0(1+) utilizes scattering operators at the sink to improve the extraction of the low-lying energy levels. We found a bound state for b¯b¯us with Ebind,b¯b¯us=(−86±22±10)MeV, but no indication for a bound state in both b¯c¯ud channels. Moreover, we show preliminary results for b¯b¯ud with I(JP)=0(1+), where we used scattering operators both at the sink and the source. We found a bound state and determined its infinite-volume binding energy with a scattering analysis, resulting in Ebind,b¯b¯ud=(−103±8)MeV.
We present our recent results on antiheavy-antiheavy-light-light tetraquark systems using lattice QCD. Our study of the b¯b¯us four-quark system with quantum numbers JP=1+ and the b¯c¯ud four-quark systems with I(JP)=0(0+) and I(JP)=0(1+) utilizes scattering operators at the sink to improve the extraction of the low-lying energy levels. We found a bound state for b¯b¯us with Ebind,b¯b¯us=(−86±22±10)MeV, but no indication for a bound state in both b¯c¯ud channels. Moreover, we show preliminary results for b¯b¯ud with I(JP)=0(1+), where we used scattering operators both at the sink and the source. We found a bound state and determined its infinite-volume binding energy with a scattering analysis, resulting in Ebind,b¯b¯ud=(−103±8)MeV.