Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- adenylyl cyclases (2)
- cyclic nucleotide-gated channels (2)
- guanylyl cyclases (2)
- optogenetics (2)
- rhodopsin (2)
- Caenorhabditis elegans (1)
- neuromuscular system (1)
Institute
In the past decade, the optogenetic toolbox for the manipulation of ion currents and cNMP levels in Caenorhabditis elegans (C. elegans) expanded. However, the implemented tools for cAMP generation were soluble enzymes (euPAC, bPAC, IlaC22 k27 and PaaC) and thus they do not precisely mimic physiological cAMP signalling occurring in microdomains in close proximity to the plasma membrane. Here, cAMP is predominantly generated by membrane-bound adenylyl cyclases, that are located in microdomains together with G protein-coupled receptors (GPCRs), protein kinase A (PKA) and their targets, enabling spatially and temporal regulation of cAMP signalling. For this reason, one aim of this study was to develop and implement membrane bound photoactivatable adenylyl cyclases for the manipulation of cAMP mediated signalling in close proximity to the plasma membrane. For this purpose, the guanylyl cyclase domains of the Blastocladiella and Catenaria Cyclase Opsins (CyclOps) were mutated to adenylyl cyclases either by introducing the mutations E497K and C566D (abbreviated as (A-2x)) or by the mutations E497K, H564D, and C566T (abbreviated as (A-3x)).
To determine the nucleotide specificity switch from GTP to ATP and the extent of light-dependent cAMP generation, the engineered enzymes were expressed in body wall muscle cells of C. elegans and in vitro cNMP measurements using C. elegans extracts were performed. Here, the highest levels of light induced cAMP generation during sustained stimulation (0.5 mW/mm2; 470 nm, 15 min) were detected for the variants BeCyclOp(A-2x), YFP-BeCyclOp(A-2x), and YFP-CaCyclOp(A-2x) (39, 57, 40 nM, respectively), though they did not reach the extent produced by the soluble bPAC (142 nM). In contrast, low magnitudes of generated cAMP were measured for the versions BeCyclOp(A-3x) and CaCyclOp(A-2x) (8 and 7 nM, respectively). Importantly, no obvious residual cGMP and basal activity was ascertained for any of the engineered enzymes.
To assess their potential to trigger and modulate cAMP mediated cholinergic neurotransmission, and to evaluate the influence of cytosolic and membrane proximal optogenetic cAMP generation, the enzymes were expressed in cholinergic motor neurons and compared to the implemented soluble bPAC via locomotion behaviour analysis on solid and in liquid media. Photoactivation of BeCyclOp(A-2x), YFP-BeCyclOp(A-2x), and YFP-CaCyclOp(A-2x) caused similarly enhanced or even more potent behavioural changes (swimming and crawling) as bPAC, whereas a more rapidly decaying response was observed for the bPAC evoked effects. Moreover, an increased diversity of the behavioural output was detected for cytosolic cAMP production by bPAC, i.e. increased bending angles and a decreased body length.
Confocal fluorescence microscopy was performed to examine the expression levels of YFP-tagged enzymes in cholinergic neurons, whereas both YFP-CyclOp(A-2x)s were expressed at similar levels, but 1.4-fold lower relative to the soluble bPAC-YFP. To compare the amount of light-dependent cAMP generation bPAC and BeCyclOp(A-2x) at light conditions that match the conditions of the behavioural experiments (30 s), cAMP measurements using C. elegans extracts were performed, whereas BeCyclOp(A-2x) depicted a 4-fold lower amount of optogenetic cAMP production than the soluble bPAC.
In sum, local (membrane proximal) cAMP generation by the membrane-bound photoactivatable adenylyl cyclases may more specifically activate cAMP dependent neurotransmission of cholinergic motor neurons than cytosolic cAMP generation, i.e. an increased mobilization and priming/docking of synaptic vesicles and an increased filling of the synaptic vesicles with the neurotransmitter acetylcholine and thus an increase in locomotion behaviour.
The optogenetic toolbox for the manipulation of cGMP mediated signalling in C. elegans consisted of the natural membrane-bound BeCyclOp and the artificial soluble bPGC. The latter generates cGMP with low efficiency and slow kinetics (~0.2 cGMP s-1), whereas BeCyclOp enables the production of much larger amounts of cGMP (L/D = 5000) at a high turnover rate (~17 cGMP s-1). Thus, one aim of this thesis was to implement a tool with features in between those of BeCyclOp and bPGC. Several orthologous CyclOps were assessed by Gao et al., 2015 for light-regulated cGMP production by in vitro assays based on the measurement of the cNMP content from CyclOp containing oocyte membranes. Here, CaCyclOp showed the highest ratio of light versus dark activity (L/D = 230) after BeCyclOp, and thus was selected for characterization in C. elegans...
Background and Purpose: The cyclic nucleotides cAMP and cGMP are ubiquitous second messengers regulating numerous biological processes. Malfunctional cNMP signalling is linked to diseases and thus is an important target in pharmaceutical research. The existing optogenetic toolbox in Caenorhabditis elegans is restricted to soluble adenylyl cyclases, the membrane-bound Blastocladiella emersonii CyclOp and hyperpolarizing rhodopsins; yet missing are membrane-bound photoactivatable adenylyl cyclases and hyperpolarizers based on K+ currents.
Experimental Approach: For the characterization of photoactivatable nucleotidyl cyclases, we expressed the proteins alone or in combination with cyclic nucleotide-gated channels in muscle cells and cholinergic motor neurons. To investigate the extent of optogenetic cNMP production and the ability of the systems to depolarize or hyperpolarize cells, we performed behavioural analyses, measured cNMP content in vitro, and compared in vivo expression levels.
Key Results: We implemented Catenaria CyclOp as a new tool for cGMP production, allowing fine-control of cGMP levels. We established photoactivatable membrane-bound adenylyl cyclases, based on mutated versions (“A-2x”) of Blastocladiella and Catenaria (“Be,” “Ca”) CyclOp, as N-terminal YFP fusions, enabling more efficient and specific cAMP signalling compared to soluble bPAC, despite lower overall cAMP production. For hyperpolarization of excitable cells by two-component optogenetics, we introduced the cAMP-gated K+-channel SthK from Spirochaeta thermophila and combined it with bPAC, BeCyclOp(A-2x), or YFP-BeCyclOp(A-2x). As an alternative, we implemented the B. emersonii cGMP-gated K+-channel BeCNG1 together with BeCyclOp.
Conclusion and Implications: We established a comprehensive suite of optogenetic tools for cNMP manipulation, applicable in many cell types, including sensory neurons, and for potent hyperpolarization.