Refine
Document Type
- Article (4)
- Conference Proceeding (1)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- EphB4 (2)
- ephrinB2 (2)
- glioblastoma (2)
- glioma (2)
- Ephrin-B2–EphB4 (1)
- PRG5 (1)
- antiangiogenic therapy (1)
- antiangiogenic therapy resistance (1)
- bone (1)
- bone metastasis (1)
Institute
- Medizin (5)
Tumor–endothelial cell interactions represent an essential mechanism in spinal metastasis. Ephrin-B2–EphB4 communication induces tumor cell repulsion from the endothelium in metastatic melanoma, reducing spinal bone metastasis formation. To shed further light on the Ephrin-B2–EphB4 signaling mechanism, we researched the effects of pharmacological EphB4 receptor stimulation and inhibition in a ligand-dependent/independent context. We chose a preventative and a post-diagnostic therapeutic window. EphB4 stimulation during tumor cell seeding led to an increase in spinal metastatic loci and number of disseminated melanoma cells, as well as earlier locomotion deficits in the presence of endothelial Ephrin-B2. In the absence of endothelial Ephrin-B2, reduction of metastatic loci with a later manifestation of locomotion deficits occurred. Thus, EphB4 receptor stimulation affects metastatic dissemination depending on the presence/absence of endothelial Ephrin-B2. After the manifestation of solid metastasis, EphB4 kinase inhibition resulted in significantly earlier manifestation of locomotion deficits in the presence of the ligand. No post-diagnostic treatment effect was found in the absence of endothelial Ephrin-B2. For solid metastasis treatment, EphB4 kinase inhibition induced prometastatic effects in the presence of endothelial Ephrin-B2. In the absence of endothelial Ephrin-B2, both therapies showed no effect on the growth of solid metastasis.
Oral e-Poster Presentations - Booth 3: Spine 2 (Tumors), September 26, 2023, 4:10 PM - 4:50 PM
Background: Spinal metastasis remains a persistent and oftentimes urgent challenge in the neurosurgical operating room. We aim to understand metastatic spread to the spinal bone on a molecular level in endothelial cells and tumor cells to facilitate improved therapeutic approaches and diagnostics.
Methods: We established a murine syngeneic spinal bone metastasis model. In vivo dissemination was first evaluated using fluorescent beads, followed by murine cancer cell lines (B16, LLC1). We investigated short-term seeding and long-term growth to identify correlations between seeding and tumor formation. EphrinB2-Eph4 interaction has been described as a crucial mediator of spinal bone metastasis. Transient (pharmacological) and permanent (genetical) ephrinB2-Eph4 interventions were performed.
Results: Dissemination of microbeads to distinct spinal segments depended on segment and particle size. Disseminated tumor cells on the contrary showed less frequent arrest in the bone and equal distribution among segments. EphrinB2 intervention changed the dissemination behavior towards the lumbar segment. Interestingly, only transient intervention retained this distribution, permanent ephrinB2 depletion on endothelial cells (efnb2iΔEC) resulted in equal dispersion of metastases. Histological staining revealed a reduction of Endomucin (Emcn) positive structures in combination with a reduction of Type H (Emcn high/CD31 high) endothelial cells in naïve efnb2iΔEC animals. In tumor tissue, these Type H endothelial cells were unaffected. However, an increase in CD31-expressing endothelial cells was observed under endothelial ephrinB2 depletion. These CD31-expressing endothelial cells have been recently described as Type E (Emcn low/CD31 high) and implicated in angiogenesis and osteogenesis.
Conclusions: We here describe a subpopulation of endothelial cells in efnb2iΔEC mice that seems to resemble pro-angiogenic and possibly pro-adhesive type E endothelial cells. Based on these finding we propose a compensatory pro-angiogenic mechanism in efnb2iΔEC mice that is highjacking pre-existing developmental pathways, which is critical for late-stage spinal metastatic growth independent of the initial seeding and extravasation of metastatic cells.
Despite intensive research, glioblastoma remains almost invariably fatal. Various promising drugs targeting specific aspects of glioma biology, in addition to or as an alternative to antiproliferative chemotherapy, were not successful in larger clinical trials. Further insights into the biology of glioma and the mechanisms behind the evasive-adaptive response to targeted therapies is needed to help identify new therapeutic targets, prognostics, or predictive biomarkers. As a modulator of the canonically oncogenic Rho-GTPase pathway, Lipid phosphate phosphatase-related protein type 5 (LPPR5) is pivotal in influencing growth, angiogenesis, and therapeutic resistance. We used a GL261 murine orthotopic allograft glioma model to quantify the tumor growth and to obtain tissue for histological and molecular analysis. Epicortical intravital epi-illumination fluorescence video microscopy of the tumor cell spheroids was used to characterize the neovascular architecture and hemodynamics. GL261-glioma growth was delayed and decelerated after LPPR5 overexpression (LPPR5OE). We observed increased tumor cell apoptosis and decreased expression and secretion of vascular endothelial growth factor A in LPPR5OE glioma. Hence, an altered micro-angioarchitecture consisting of dysfunctional small blood vessels was discovered in the LPPR5OE tumors. Sunitinib therapy eliminated these vessels but had no effect on tumor growth or apoptosis. In general, LPPR5 overexpression generated a more benign, proapoptotic glioma phenotype with delayed growth and a dysfunctional vascular architecture.
EphrinB2–EphB4 signaling is critical during embryogenesis for cardiovascular formation and neuronal guidance. Intriguingly, critical expression patterns have been discovered in cancer pathologies over the last two decades. Multiple connections to tumor migration, growth, angiogenesis, apoptosis, and metastasis have been identified in vitro and in vivo. However, the molecular signaling pathways are manifold and signaling of the EphB4 receptor or the ephrinB2 ligand is cancer type specific. Here we explore the impact of these signaling pathways in neurooncological disease, including glioma, brain metastasis, and spinal bone metastasis. We identify potential downstream pathways that mediate cancer suppression or progression and seek to understand it´s role in antiangiogenic therapy resistance in glioma. Despite the Janus-faced functions of ephrinB2–EphB4 signaling in cancer Eph signaling remains a promising clinical target.
Vascular guidance is critical in developmental vasculogenesis and pathological angiogenesis. Brain tumors are strongly vascularized, and antiangiogenic therapy was anticipated to exhibit a strong anti-tumor effect in this tumor type. However, vascular endothelial growth factor A (VEGFA) specific inhibition had no significant impact in clinical practice of gliomas. More research is needed to understand the failure of this therapeutic approach. EphrinB2 has been found to directly interact with vascular endothelial growth factor receptor 2 (VEGFR2) and regulate its activity. Here we analyzed the expression of ephrinB2 and EphB4 in human glioma, we observed vascular localization of ephrinB2 in physiology and pathology and found a significant survival reduction in patients with elevated ephrinB2 tumor expression. Induced endothelial specific depletion of ephrinB2 in the adult mouse (efnb2i∆EC) had no effect on the quiescent vascular system of the brain. However, we found glioma growth and perfusion altered in efnb2i∆EC animals similar to the effects observed with antiangiogenic therapy. No additional anti-tumor effect was observed in efnb2i∆EC animals treated with antiangiogenic therapy. Our data indicate that ephrinB2 and VEGFR2 converge on the same pathway and intervention with either molecule results in a reduction in angiogenesis.