Refine
Document Type
- Article (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Animal models (1)
- Apoptosis (1)
- CEP68 (1)
- CRISPR/Cas (1)
- Cardiology (1)
- Fluid therapy (1)
- Genome editing (1)
- Long non-coding RNAs (1)
- Mortality (1)
- Outcome (1)
Institute
Purpose: Trauma is the leading cause of death in children. In adults, blood transfusion and fluid resuscitation protocols changed resulting in a decrease of morbidity and mortality over the past 2 decades. Here, transfusion and fluid resuscitation practices were analysed in severe injured children in Germany.
Methods: Severely injured children (maximum Abbreviated Injury Scale (AIS) ≥ 3) admitted to a certified trauma-centre (TraumaZentrum DGU®) between 2002 and 2017 and registered at the TraumaRegister DGU® were included and assessed regarding blood transfusion rates and fluid therapy.
Results: 5,118 children (aged 1–15 years) with a mean ISS 22 were analysed. Blood transfusion rates administered until ICU admission decreased from 18% (2002–2005) to 7% (2014–2017). Children who are transfused are increasingly seriously injured. ISS has increased for transfused children aged 1–15 years (2002–2005: mean 27.7–34.4 in 2014–2017). ISS in non-transfused children has decreased in children aged 1–15 years (2002–2005: mean 19.6 to mean 17.6 in 2014–2017). Mean prehospital fluid administration decreased from 980 to 549 ml without affecting hemodynamic instability.
Conclusion: Blood transfusion rates and amount of fluid resuscitation decreased in severe injured children over a 16-year period in Germany. Restrictive blood transfusion and fluid management has become common practice in severe injured children. A prehospital restrictive fluid management strategy in severely injured children is not associated with a worsened hemodynamic state, abnormal coagulation or base excess but leads to higher hemoglobin levels.
Long non-coding RNAs (lncRNAs) contribute to cardiac (patho)physiology. Aging is the major risk factor for cardiovascular disease with cardiomyocyte apoptosis as one underlying cause. Here, we report the identification of the aging-regulated lncRNA Sarrah (ENSMUST00000140003) that is anti-apoptotic in cardiomyocytes. Importantly, loss of SARRAH (OXCT1-AS1) in human engineered heart tissue results in impaired contractile force development. SARRAH directly binds to the promoters of genes downregulated after SARRAH silencing via RNA-DNA triple helix formation and cardiomyocytes lacking the triple helix forming domain of Sarrah show an increase in apoptosis. One of the direct SARRAH targets is NRF2, and restoration of NRF2 levels after SARRAH silencing partially rescues the reduction in cell viability. Overexpression of Sarrah in mice shows better recovery of cardiac contractile function after AMI compared to control mice. In summary, we identified the anti-apoptotic evolutionary conserved lncRNA Sarrah, which is downregulated by aging, as a regulator of cardiomyocyte survival.
DGK and DZHK position paper on genome editing: basic science applications and future perspective
(2021)
For a long time, gene editing had been a scientific concept, which was limited to a few applications. With recent developments, following the discovery of TALEN zinc-finger endonucleases and in particular the CRISPR/Cas system, gene editing has become a technique applicable in most laboratories. The current gain- and loss-of function models in basic science are revolutionary as they allow unbiased screens of unprecedented depth and complexity and rapid development of transgenic animals. Modifications of CRISPR/Cas have been developed to precisely interrogate epigenetic regulation or to visualize DNA complexes. Moreover, gene editing as a clinical treatment option is rapidly developing with first trials on the way. This article reviews the most recent progress in the field, covering expert opinions gathered during joint conferences on genome editing of the German Cardiac Society (DGK) and the German Center for Cardiovascular Research (DZHK). Particularly focusing on the translational aspect and the combination of cellular and animal applications, the authors aim to provide direction for the development of the field and the most frequent applications with their problems.
Schriftenschau
(2011)
The centrosome linker proteins C-Nap1, rootletin, and CEP68 connect the two centrosomes of a cell during interphase into one microtubule-organizing center. This coupling is important for cell migration, cilia formation, and timing of mitotic spindle formation. Very little is known about the structure of the centrosome linker. Here, we used stimulated emission depletion (STED) microscopy to show that each C-Nap1 ring at the proximal end of the two centrioles organizes a rootletin ring and, in addition, multiple rootletin/CEP68 fibers. Rootletin/CEP68 fibers originating from the two centrosomes form a web-like, interdigitating network, explaining the flexible nature of the centrosome linker. The rootletin/CEP68 filaments are repetitive and highly ordered. Staggered rootletin molecules (N-to-N and C-to-C) within the filaments are 75 nm apart. Rootletin binds CEP68 via its C-terminal spectrin repeat-containing region in 75-nm intervals. The N-to-C distance of two rootletin molecules is ∼35 to 40 nm, leading to an estimated minimal rootletin length of ∼110 nm. CEP68 is important in forming rootletin filaments that branch off centrioles and to modulate the thickness of rootletin fibers. Thus, the centrosome linker consists of a vast network of repeating rootletin units with C-Nap1 as ring organizer and CEP68 as filament modulator.
Poster presentation: Hyperphosphorylation of tau is a characteristic of Alzheimer's disease (AD). Our group has established a model for tau hyperphosphorylation by mutating 10 residues from Ser/Thr to Glu to simulate the negative charge of phosphorylated residues ("pseudohyperphosphorylated (PHP)-tau"). In order to analyze temporal and spatial effects of hyperphosphorylation of tau in a systemic context, we have established transgenic mouse lines that express human wild-type (wt)- or PHP-tau under the control of the CamKIIalpha-promoter that leads to a forebrain specific moderate expression in neurons, i.e. the region where also tau-pathology in AD is abundant. For the evaluation of tau-induced changes in the transgenic mice, we quantified spine densities in the neocortex and hippocampus of transgenic mice. The spine densitiy was significantly increased in PHP-tau compared to wt-tau expressing mice. It is known that AD is associated with aberrant pre- and postsynaptic sprouting. Axonal sprouting is also observed in transgenic mice expressing mutated amyloid precursor protein (APP), which suggests that Abeta plays a significant role in this process. We deduce from our results, that (pseudo)-hyperphosphorylation of tau is sufficient to induce aberrant sprouting in the absence of Abeta. Analyses whether this sprouting is induced by pre- or postsynaptic changes and if functionally active synapses are formed are in progress. It will be interesting to determine if stabilization of these newly formed synapses slows or – in contrary – accelerates the progression of the disease. Sprouting as observed in our PHP-tau expressing mice is part of neuronal differentiation. One family of enzymes that is involved in cell differentiation are mitogen-acitvated protein kinases (MAPK). Western blot analysis was performed with brain lysates from transgenic mice to check whether PHP-tau induced sprouting is associated with MAPK activation. In fact, we also observed an increased activation of the MAPK ERK1/2 evident by phosphorylation of the residues Thr202 and Tyr204. ERK1/2 is also known to phosphorylate tau at sites characteristic for AD. Our results suggest the presence of a vicious circle by which (pseudo)-hyperphosphorylated tau activates ERK1/2 which in turn phosphorylates tau.
Background: Transfusion of red blood cell concentrate can be life-saving, but requires accurate dose calculations in children. Aims: We tested the hypothesis that cognitive aids would improve identification of the correct recommended volumes and products, according to the German National Transfusion guidelines, in pediatric transfusion scenarios. Methods: Four online questionnaire-based scenarios, two with hemodynamically stable and two with hemodynamically unstable children, were sent to German and international pediatric anesthetists for completion. In the two stable scenarios, participants were given pre-filled tables that contained all required information. For the two emergency scenarios, existing algorithms were used and required calculation by the user. The results were classified into three categories of deviations from the recommended values (DRV): DRV120 (<80% or >120%), as the acceptable variation; DRV 300 (<33% or >300%), the deviation of concern for potential harm; and DRV 1000 (<10% or >1000%), the excessive deviation with a high probability of harm. Results: A total of 1.458 pediatric anesthetists accessed this simulation questionnaire, and 402 completed questionnaires were available for analysis. A pre-filled tabular aid, avoiding calculations, led to a reduction in deviation rates in the category of DRV120 by 60% for each and of DRV300 by 17% and 20%, respectively. The use of algorithms as aids for unstable emergencies led to a reduction in the deviation rate only for DRV120 (20% and 15% respectively). In contrast, the deviation rates for DRV300 and DRV1000 rose by 37% and 16%, respectively. Participants used higher transfusion thresholds for the emergency case of a 2-year-old compromised child than for the stable case with a patient of the same age (on average, 8.6 g/dL, 95% CI 8.5–8.8 versus 7.1 g/dL, 95% CI 7.0–7.2, p < 0.001) if not supported by our aids. Participants also used a higher transfusion threshold for unstable children aged 3 months than for stable children of the same age (on average, 8.9 g/dL, 95% CI 8.7–9.0 versus 7.9 g/dL, 95% CI 7.7–8.0, p < 0.001). Conclusions: The use of cognitive aids with precalculated transfusion volumes for determining transfusion doses in children may lead to improved adherence to published recommendations, and could potentially reduce dosing deviations outside those recommended by the German national transfusion guidelines.