Refine
Document Type
- Article (7)
- Working Paper (2)
Language
- English (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- European Monetary Fund (1)
- European Stability Mechanism (1)
- Eurozone (1)
- Fluid therapy (1)
- International Monetary Fund (1)
- Maastricht criteria (1)
- Mortality (1)
- Outcome (1)
- Paediatric trauma patients (1)
- Patient blood management (1)
Purpose: Trauma is the leading cause of death in children. In adults, blood transfusion and fluid resuscitation protocols changed resulting in a decrease of morbidity and mortality over the past 2 decades. Here, transfusion and fluid resuscitation practices were analysed in severe injured children in Germany.
Methods: Severely injured children (maximum Abbreviated Injury Scale (AIS) ≥ 3) admitted to a certified trauma-centre (TraumaZentrum DGU®) between 2002 and 2017 and registered at the TraumaRegister DGU® were included and assessed regarding blood transfusion rates and fluid therapy.
Results: 5,118 children (aged 1–15 years) with a mean ISS 22 were analysed. Blood transfusion rates administered until ICU admission decreased from 18% (2002–2005) to 7% (2014–2017). Children who are transfused are increasingly seriously injured. ISS has increased for transfused children aged 1–15 years (2002–2005: mean 27.7–34.4 in 2014–2017). ISS in non-transfused children has decreased in children aged 1–15 years (2002–2005: mean 19.6 to mean 17.6 in 2014–2017). Mean prehospital fluid administration decreased from 980 to 549 ml without affecting hemodynamic instability.
Conclusion: Blood transfusion rates and amount of fluid resuscitation decreased in severe injured children over a 16-year period in Germany. Restrictive blood transfusion and fluid management has become common practice in severe injured children. A prehospital restrictive fluid management strategy in severely injured children is not associated with a worsened hemodynamic state, abnormal coagulation or base excess but leads to higher hemoglobin levels.
The so-called Troika, consisting of the EU-Commission, the European Central Bank (ECB) and the International Monetary Fund (IMF), was supposed to support the member states of the euro area which had been hit hard by a sovereign debt crisis. For that purpose, economic adjustment programs were drafted and monitored in order to prevent the break-up of the euro area and sovereign defaults. The cooperation of these institutions, which was born out of necessity, has been partly successful, but has also created persistent problems. With the further increase of public debt, especially in France and Italy, the danger of a renewed crisis in the euro area was growing. The European Stability Mechanism (ESM) together with the European Commission will replace the Troika in the future, following decisions of the EU Summit of December 2018. It shall play the role of a European Monetary Fund in the event of a crisis. The IMF, on the other side, will no longer play an active role in solving sovereign debt crises in the euro area. The current course is, however, inadequate to tackle the core problems of the euro zone and to avoid future crises, which are mainly structural in nature and due to escalating public debt and lack of international competitiveness of some member countries. The current Corona crisis will aggravate the institutional problems. It has led to a common European fiscal response ("Next Generation EU"). This rescue and recovery program will not be financed by ESM resources and will not be monitored by the ESM. One important novelty of this package is that it involves the issuance of substantial common European debt.
Background: To compare severe infectious complication rates after transrectal prostate biopsies between cephalosporins and fluoroquinolones for antibiotic monoprophylaxis.
Material and Methods: In the multi-institutional cohort, between November 2014 and July 2020 patients received either cefotaxime (single dose intravenously), cefpodoxime (multiple doses orally) or fluoroquinolones (multiple-doses orally or single dose intravenously) for transrectal prostate biopsy prophylaxis. Data were prospectively acquired and retrospectively analyzed. Severe infectious complications were evaluated within 30 days after biopsy. Logistic regression models predicted biopsy-related infectious complications according to antibiotic prophylaxis, application type and patient- and procedure-related risk factors.
Results: Of 793 patients, 132 (16.6%) received a single dose of intravenous cefotaxime and were compared to 119 (15%) who received multiple doses of oral cefpodoxime and 542 (68.3%) who received fluoroquinolones as monoprophylaxis. The overall incidence of severe infectious complications was 1.0% (n=8). No significant differences were observed between the three compared groups (0.8% vs. 0.8% vs. 1.1%, p=0.9). The overall rate of urosepsis was 0.3% and did not significantly differ between the three compared groups as well.
Conclusion: Monoprophylaxis with third generation cephalosporins was efficient in preventing severe infectious complications after prostate biopsy. Single intravenous dose of cefotaxime and multiday regimen of oral cefpodoxime showed a low incidence of infectious complications <1%. No differences were observed in comparison to fluoroquinolones.
Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations as well as hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO) in the central Amazon Basin over a one-year period and full seasonal cycle (March 2014 - February 2015). The presented measurements provide a climatology of CCN properties for a characteristic central Amazonian rain forest site.
The CCN measurements were continuously cycled through 10 levels of supersaturation (S = 0.11 to 1.10 %) and span the aerosol particle size range from 20 to 245 nm. The observed mean critical diameters of CCN activation range from 43 nm at S = 1.10 % to 172 nm at S = 0.11 %. The particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode (κAit = 0.14 ± 0.03), elevated values for the accumulation mode (κAcc = 0.22 ± 0.05), and an overall mean value of κmean = 0.17 ± 0.06, consistent with high fractions of organic aerosol.
The hygroscopicity parameter κ exhibits remarkably little temporal variability: no pronounced diurnal cycles, weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. We find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes.
For modelling purposes, we compare different approaches of predicting CCN number concentration and present a novel parameterization, which allows accurate CCN predictions based on a small set of input data.
Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations and hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO) in the central Amazon Basin over a 1-year period and full seasonal cycle (March 2014–February 2015). The measurements provide a climatology of CCN properties characteristic of a remote central Amazonian rain forest site.
The CCN measurements were continuously cycled through 10 levels of supersaturation (S = 0.11 to 1.10 %) and span the aerosol particle size range from 20 to 245 nm. The mean critical diameters of CCN activation range from 43 nm at S = 1.10 % to 172 nm at S = 0.11 %. The particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode (κAit = 0.14 ± 0.03), higher values for the accumulation mode (κAcc = 0.22 ± 0.05), and an overall mean value of κmean = 0.17 ± 0.06, consistent with high fractions of organic aerosol.
The hygroscopicity parameter, κ, exhibits remarkably little temporal variability: no pronounced diurnal cycles, only weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. We find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes.
For modeling purposes, we compare different approaches of predicting CCN number concentration and present a novel parametrization, which allows accurate CCN predictions based on a small set of input data.
Calibration of TCCON column-averaged CO2: the first aircraft campaign over European TCCON sites
(2011)
The Total Carbon Column Observing Network (TCCON) is a ground-based network of Fourier Transform Spectrometer (FTS) sites around the globe, where the column abundances of CO2, CH4, N2O, CO and O2 are measured. CO2 is constrained with a precision better than 0.25 %. To achieve a similarly high accuracy, calibration to World Meteorological Organization (WMO) standards is required. This paper introduces the first aircraft calibration campaign of five European TCCON sites and a mobile FTS instrument. A series of WMO standards in-situ profiles were obtained over European TCCON sites via aircraft and compared with retrievals of CO2 column amounts from the TCCON instruments. The results of the campaign show that the FTS measurements are consistently biased 1.0 % ± 0.2 % low with respect to WMO standards, in agreement with previous TCCON calibration campaigns. The standard a priori profile for the TCCON FTS retrievals is shown to not add a bias. The same calibration factor is generated using aircraft profiles as a priori and with the TCCON standard a priori. With a calibration to WMO standards, the highly precise TCCON CO2 measurements of total column concentrations provide a suitable database for the calibration and validation of nadir-viewing satellites.
Calibration of TCCON column-averaged CO2: the first aircraft campaign over European TCCON sites
(2011)
The Total Carbon Column Observing Network (TCCON) is a ground-based network of Fourier Transform Spectrometer (FTS) sites around the globe, where the column abundances of CO2, CH4, N2O, CO and O2 are measured. CO2 is constrained with a precision better than 0.25% (1-σ). To achieve a similarly high accuracy, calibration to World Meteorological Organization (WMO) standards is required. This paper introduces the first aircraft calibration campaign of five European TCCON sites and a mobile FTS instrument. A series of WMO standards in-situ profiles were obtained over European TCCON sites via aircraft and compared with retrievals of CO2 column amounts from the TCCON instruments. The results of the campaign show that the FTS measurements are consistently biased 1.1% ± 0.2% low with respect to WMO standards, in agreement with previous TCCON calibration campaigns. The standard a priori profile for the TCCON FTS retrievals is shown to not add a bias. The same calibration factor is generated using aircraft profiles as a priori and with the TCCON standard a priori. With a calibration to WMO standards, the highly precise TCCON CO2 measurements of total column concentrations provide a suitable database for the calibration and validation of nadir-viewing satellites
Size-resolved measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations and hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO) in the central Amazon Basin over a full seasonal cycle (Mar 2014–Feb 2015). In a companion part 1 paper, we presented an in-depth CCN characterization based on annually as well as seasonally averaged time intervals and discuss different parametrization strategies to represent the Amazonian CCN cycling in modelling studies (M. Pöhlker et al., 2016b). The present part 2 study analyzes the aerosol and CCN variability in original time resolution and, thus, resolves aerosol advection and transformation for the following case studies, which represent the most characteristic states of the Amazonian atmosphere:
1. Near-pristine (NP) conditions, defined as the absence of detectable black carbon (< 0.01 µg m−3), showed their highest occurrence (up to 30 %) in the wet season (i.e., Mar–May). On average, the NP episodes are characterized by a bimodal aerosol size distribution (strong Aitken mode: DAit = 70 nm, NAit = ~ 200 cm−3 vs. weaker accumulation mode: Dacc = 170 nm, Nacc = ~ 60 cm−3), a mostly organic particle composition, and relatively low hygroscopicity levels (κAit = 0.12 vs. κacc = 0.18). The NP CCN efficiency spectrum shows that the CCN population is sensitive to changes in supersaturation (S) over a wide S range.
2. Long-range transport (LRT) conditions frequently mix Saharan dust, African combustion smoke, and sea spray aerosols into the Amazonian wet season atmosphere. The LRT episodes (i.e., Feb–Apr) are characterized by an accumulation mode dominated size distribution (DAit = 80 nm, NAit = 120 cm−3 vs. Dacc = 180 nm, Nacc = 300 cm−3), a clearly increased abundance of dust and salt compounds, and relatively high hygroscopicity levels (κAit = 0.18, κacc = 0.34). The LRT CCN efficiency spectrum shows that the CCN population is highly sensitive to changes in S in the low S regime.
3. Biomass burning (BB) conditions dominate the Amazonian dry season. A selected characteristic BB episode shows a very strong accumulation mode (DAit = 70 nm, NAit = ~ 140 cm−3 vs. Dacc = 170 nm, Nacc = ~ 3400 cm−3), particles with very high organic fractions (> 90 %), and correspondingly low hygroscopicity levels (κAit = 0.14, κacc = 0.17). The BB CCN efficiency spectrum shows that the CCN population is highly sensitive to changes in S in the low S regime.
4. Mixed pollution conditions show the superposition of African (i.e., volcanic) and Amazonian (i.e., biomass burning) aerosol emissions during the dry season. The African aerosols showed a broad monomodal distribution (D = 130 nm, N = ~ 1300 cm−3), with very high sulfate fractions (20 %), and correspondingly high hygroscopicity (κAit = 0.14, κacc = 0.22). This was superimposed by fresh smoke from nearby fires with one strong mode (D = 113 nm, Nacc = ~ 2800 cm−3), an organic-dominated aerosol, and sharply decreased hygroscopicity (κAit = 0.10, κacc = 0.20). These conditions underline the rapidly changing pollution regimes with clear impacts on the aerosol and CCN properties.
Overall, this study provides detailed insights into the CCN cycling in relation to aerosol-cloud interaction in the vulnerable and climate-relevant Amazon region. The detailed analysis of aerosol and CCN key properties and particularly the extracted CCN efficiency spectra with the associated fit parameters provide a basis for an in-depth analysis of aerosol-cloud interaction in the Amazon and beyond.
Debt levels in the eurozone have reached new record highs. The member countries have tried to cushion the economic consequences of the corona pandemic with a massive increase in government spending. End of 2021 public debt in relation to GDP will approach 100% on average. There are various calls to abolish or soften the Maastricht rules of limiting sovereign debt. We see the risk of a new sovereign debt crisis in this decade if it is not possible to bring public debt down to an acceptable level. Our new fiscal rule would be suitable and appropriate for this purpose, because obviously the Maastricht criteria have failed. In contrast to the rigid 3% Maastricht-criterion, our rule is flexible and it addresses the main problem: excessively high public debt ratios. And it lowers the existing incentives for highly indebted governments to exert expansionary pressure on monetary policy. If obeyed strictly, our rule reinforces the snowball effect and reduces the excessively high debt ratios within a manageable period, even if nominal growth is weak. This is confirmed by simulations with different scenarios as well as with the hypothetical application of the new fiscal rule to eurozone economies from 2022 to 2026. Finally, we take up the recent proposal by ESM economists to increase the permissible debt ratio from 60 to 100% of GDP in the eurozone.