Refine
Year of publication
Language
- English (19)
Has Fulltext
- yes (19)
Is part of the Bibliography
- no (19)
Keywords
- ATP synthase (1)
- Biomarker (1)
- C-clamp (1)
- COVID-19 (1)
- CTLA-4 (1)
- Combined immune checkpoint blockade (1)
- Ipilimumab (1)
- NMR spectroscopy (1)
- Nivolumab (1)
- PD-1 (1)
Institute
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.
Bipolar disorder (BD) is a highly heritable neuropsychiatric disease characterized by recurrent episodes of mania and depression. BD shows substantial clinical and genetic overlap with other psychiatric disorders, in particular schizophrenia (SCZ). The genes underlying this etiological overlap remain largely unknown. A recent SCZ genome wide association study (GWAS) by the Psychiatric Genomics Consortium identified 128 independent genome-wide significant single nucleotide polymorphisms (SNPs). The present study investigated whether these SCZ-associated SNPs also contribute to BD development through the performance of association testing in a large BD GWAS dataset (9747 patients, 14278 controls). After re-imputation and correction for sample overlap, 22 of 107 investigated SCZ SNPs showed nominal association with BD. The number of shared SCZ-BD SNPs was significantly higher than expected (p = 1.46x10-8). This provides further evidence that SCZ-associated loci contribute to the development of BD. Two SNPs remained significant after Bonferroni correction. The most strongly associated SNP was located near TRANK1, which is a reported genome-wide significant risk gene for BD. Pathway analyses for all shared SCZ-BD SNPs revealed 25 nominally enriched gene-sets, which showed partial overlap in terms of the underlying genes. The enriched gene-sets included calcium- and glutamate signaling, neuropathic pain signaling in dorsal horn neurons, and calmodulin binding. The present data provide further insights into shared risk loci and disease-associated pathways for BD and SCZ. This may suggest new research directions for the treatment and prevention of these two major psychiatric disorders.
Introduction: Evidence from a number of open-label, uncontrolled studies has suggested that rituximab may benefit patients with autoimmune diseases who are refractory to standard-of-care. The objective of this study was to evaluate the safety and clinical outcomes of rituximab in several standard-of-care-refractory autoimmune diseases (within rheumatology, nephrology, dermatology and neurology) other than rheumatoid arthritis or non-Hodgkin's lymphoma in a real-life clinical setting.
Methods: Patients who received rituximab having shown an inadequate response to standard-of-care had their safety and clinical outcomes data retrospectively analysed as part of the German Registry of Autoimmune Diseases. The main outcome measures were safety and clinical response, as judged at the discretion of the investigators.
Results: A total of 370 patients (299 patient-years) with various autoimmune diseases (23.0% with systemic lupus erythematosus, 15.7% antineutrophil cytoplasmic antibody-associated granulomatous vasculitides, 15.1% multiple sclerosis and 10.0% pemphigus) from 42 centres received a mean dose of 2,440 mg of rituximab over a median (range) of 194 (180 to 1,407) days. The overall rate of serious infections was 5.3 per 100 patient-years during rituximab therapy. Opportunistic infections were infrequent across the whole study population, and mostly occurred in patients with systemic lupus erythematosus. There were 11 deaths (3.0% of patients) after rituximab treatment (mean 11.6 months after first infusion, range 0.8 to 31.3 months), with most of the deaths caused by infections. Overall (n = 293), 13.3% of patients showed no response, 45.1% showed a partial response and 41.6% showed a complete response. Responses were also reflected by reduced use of glucocorticoids and various immunosuppressives during rituximab therapy and follow-up compared with before rituximab. Rituximab generally had a positive effect on patient well-being (physician's visual analogue scale; mean improvement from baseline of 12.1 mm).
Conclusions: Data from this registry indicate that rituximab is a commonly employed, well-tolerated therapy with potential beneficial effects in standard of care-refractory autoimmune diseases, and support the results from other open-label, uncontrolled studies.
Background The connection of the variable part of the heavy chain (VH) and and the variable part of the light chain (VL) by a peptide linker to form a consecutive polypeptide chain (single chain antibody, scFv) was a breakthrough for the functional production of antibody fragments in Escherichia coli. Being double the size of fragment variable (Fv) fragments and requiring assembly of two independent polypeptide chains, functional Fab fragments are usually produced with significantly lower yields in E. coli. An antibody design combining stability and assay compatibility of the fragment antigen binding (Fab) with high level bacterial expression of single chain Fv fragments would be desirable. The desired antibody fragment should be both suitable for expression as soluble antibody in E. coli and antibody phage display. Results Here, we demonstrate that the introduction of a polypeptide linker between the fragment difficult (Fd) and the light chain (LC), resulting in the formation of a single chain Fab fragment (scFab), can lead to improved production of functional molecules. We tested the impact of various linker designs and modifications of the constant regions on both phage display efficiency and the yield of soluble antibody fragments. A scFab variant without cysteins (scFabdeltaC) connecting the constant part 1 of the heavy chain (CH1) and the constant part of the light chain (CL) were best suited for phage display and production of soluble antibody fragments. Beside the expression system E.coli, the new antibody format was also expressed in Pichia pastoris. Monovalent and divalent fragments (DiFabodies) as well as multimers were characterised. Conclusion A new antibody design offers the generation of bivalent Fab derivates for antibody phage display and production of soluble antibody fragments. This antibody format is of particular value for high throughput proteome binder generation projects, due to the avidity effect and the possible use of common standard sera for detection.
Background: Pulmonary nocardiosis (PN) is an uncommon but potentially life-threatening infection. Most of our knowledge is derived from case reports or smaller case series. Recently, increasing PN incidence rates have been reported. We aim to describe the clinical course of and risk factors for PN in four Western European countries and to estimate population-based annual hospitalization rates.
Methods: Retrospective evaluation (1995 to 2011) of the clinical course of and risk factors for PN in patients from 11 hospitals in four European countries (Germany, Austria, Switzerland and The Netherlands). Calculation of population-based estimates of hospitalization rates of PN in Germany (2005 to 2011) using official German nationwide diagnosis-related groups (DRG) hospital statistics.
Results: Forty-three patients fulfilled stringent criteria for proven (n = 8) and probable (n = 35) PN; seven with extrapulmonary dissemination. Within the 43 patients, major PN risk factors were immunocompromising (83.7%) and/or pulmonary (58.1%; in 27.9% as only comorbidity) comorbidities. Median duration of PN targeted therapy was 12 weeks. Distinguished patterns of resistance were observed (imipenem susceptibility: N. farcinica 33.3%; N. asteroides 66.7%). Overall mortality rate was 18.9%; in disseminated PN 50%. Over time, annual PN hospitalization rates remained unchanged at around 0.04/100′000 with the highest rate among men aged 75–84 years (0.24/100′000).
Conclusion: PN is rare, but potentially life-threatening, and mainly affects immunocompromised elder males. Overall annual hospitalization rates remained stable between 2005 and 2011.
We solved the crystal structure of a novel type of c-ring isolated from Bacillus pseudofirmus OF4 at 2.5 Å, revealing a cylinder with a tridecameric stoichiometry, a central pore, and an overall shape that is distinct from those reported thus far. Within the groove of two neighboring c-subunits, the conserved glutamate of the outer helix shares the proton with a bound water molecule which itself is coordinated by three other amino acids of outer helices. Although none of the inner helices contributes to ion binding and the glutamate has no other hydrogen bonding partner than the water oxygen, the site remains in a stable, ion-locked conformation that represents the functional state present at the c-ring/membrane interface during rotation. This structure reveals a new, third type of ion coordination in ATP synthases. It appears in the ion binding site of an alkaliphile in which it represents a finely tuned adaptation of the proton affinity during the reaction cycle. Formal Correction: This article has been formally corrected to address the following errors. 1. The images for Figures S2 and S3 were incorrectly switched. The image that appears as Figure S2 should be Figure S3, and the image that appears as Figure S3 should be Figure S2. The figure legends appear in the correct order. Please view the correct... (read formal correction) 2. The images for Figures S2 and S3 were incorrectly switched. The image that appears as Figure S2 should be Figure S3, and the image that appears as Figure S3 should be Figure S2. The figure legends appear in the correct order. Please view the correct... (read formal correction)
A new type of Na+-driven ATP synthase membrane rotor with a two-carboxylate ion-coupling motif
(2013)
Abstract: The anaerobic bacterium Fusobacterium nucleatum uses glutamate decarboxylation to generate a transmembrane gradient of Na+. Here, we demonstrate that this ion-motive force is directly coupled to ATP synthesis, via an F1Fo-ATP synthase with a novel Na+ recognition motif, shared by other human pathogens. Molecular modeling and free-energy simulations of the rotary element of the enzyme, the c-ring, indicate Na+ specificity in physiological settings. Consistently, activity measurements showed Na+ stimulation of the enzyme, either membrane-embedded or isolated, and ATP synthesis was sensitive to the Na+ ionophore monensin. Furthermore, Na+ has a protective effect against inhibitors targeting the ion-binding sites, both in the complete ATP synthase and the isolated c-ring. Definitive evidence of Na+ coupling is provided by two identical crystal structures of the c11 ring, solved by X-ray crystallography at 2.2 and 2.6 Å resolution, at pH 5.3 and 8.7, respectively. Na+ ions occupy all binding sites, each coordinated by four amino acids and a water molecule. Intriguingly, two carboxylates instead of one mediate ion binding. Simulations and experiments demonstrate that this motif implies that a proton is concurrently bound to all sites, although Na+ alone drives the rotary mechanism. The structure thus reveals a new mode of ion coupling in ATP synthases and provides a basis for drug-design efforts against this opportunistic pathogen.
Author Summary: Essential cellular processes such as biosynthesis, transport, and motility are sustained by the energy released in the hydrolysis of ATP, the universal energy carrier in living cells. Most ATP in the cell is produced by a membrane-bound enzyme, the ATP synthase, through a rotary mechanism that is coupled to the translocation of ions across the membrane. The majority of ATP synthases are energized by transmembrane electrochemical gradients of protons (proton-motive force), but a number of organisms, including some important human pathogens, use gradients of sodium ions instead (sodium-motive force). The ion specificity of ATP synthases is determined by a membrane-embedded sub-complex, the c-ring, which is the smallest known biological rotor. The functional mechanism of the rotor ring and its variations among different organisms are of wide interest, because of this enzyme's impact on metabolism and disease, and because of its potential for nanotechnology applications. Here, we characterize a previously unrecognized type of Na+-driven ATP synthase from the opportunistic human pathogen Fusobacterium nucleatum, which is implicated in periodontal diseases. We analyzed this ATP synthase and its rotor ring through a multi-disciplinary approach, combining cell-growth and biochemical assays, X-ray crystallography and computer-simulation methods. Two crystal structures of the membrane rotor were solved, at low and high pH, revealing an atypical ion-recognition motif mediated by two carboxylate side-chains. This motif is shared by other human pathogens, such as Mycobacterium tuberculosis or Streptococcus pneumonia, whose ATP synthases are targets of novel antibiotic drugs. The implications of this ion-recognition mode on the mechanism of the ATP synthase and the cellular bioenergetics of F. nucleatum were thus examined. Our results provide the basis for future pharmacological efforts against this important pathogen.
Background: Surgical complications are associated with a significant burden to patients and hospitals and are increasingly discussed in recent literature. This cohort study reviewed surgery-related complications in a Level I trauma center. The effect of a complication avoidance care bundle on the rate of surgical complications was analyzed. Methods: All complications (surgical and nonsurgical) that occur in our trauma department are prospectively captured using a standardized documentation form and are discussed and analyzed in a weekly trauma Morbidity and Mortality (M&M) conference. Surgical complication rates are calculated using the annual surgical procedure numbers. Based on discussions in the M&M conference, a complication avoidance care bundle consisting of five measures was established: (1) Improving team situational awareness; (2) reducing operating room traffic by staff members and limiting door-opening events; (3) preoperative screening for infectious foci; (4) adapted preoperative antibiotic prophylaxis in anatomic regions with a high risk of infectious complications; and (5) use of iodine-impregnated adhesive drape. Results: The number of surgical procedures steadily increased over the study years, from 3587 in 2015 to 3962 in 2019 (an increase of 10.5%). Within this 5-year study period, the overall rate of surgical complications was 0.8%. Surgical site infections were the most frequently found complications (n = 40, 24.8% of all surgical complications), followed by screw malposition (n = 20, 12.4%), postoperative dislocations of arthroplasties (n = 18, 11.2%), and suboptimal fracture reduction (n = 18, 11.2%). Following implementation of the complication avoidance care bundle, the overall rate of surgical complications significantly decreased, from 1.14% in the year 2016 to 0.56% in the study year 2019, which represents a reduction of 51% within a 3-year time period. Conclusions: A multimodal strategy targeted at reducing the surgical complication rate can be successfully established based on a transparent discussion of adverse surgical outcomes. The combination of the different preventive measures was associated with reducing the overall complication rate by half within a 3-year time period.
Background: Regulatory T cells (Treg) expressing the transcription factor forkhead-box protein P3 (Foxp3) have been identified to counteract anti-tumor immune responses during tumor progression. Besides, Foxp3 presentation by cancer cells itself may also allow them to evade from effector T-cell responses, resulting in a survival benefit of the tumor. For colorectal cancer (CRC) the clinical relevance of Foxp3 has not been evaluated in detail. Therefore the aim of this study was to study its impact in colorectal cancer (CRC).
Methods and Findings: Gene and protein analysis of tumor tissues from patients with CRC was performed to quantify the expression of Foxp3 in tumor infiltrating Treg and colon cancer cells. The results were correlated with clinicopathological parameters and patients overall survival. Serial morphological analysis demonstrated Foxp3 to be expressed in cancer cells. High Foxp3 expression of the cancer cells was associated with poor prognosis compared to patients with low Foxp3 expression. In contrast, low and high Foxp3 level in tumor infiltrating Treg cells demonstrated no significant differences in overall patient survival.
Conclusions: Our findings strongly suggest that Foxp3 expression mediated by cancer cells rather than by Treg cells contribute to disease progression.