Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- B cell receptor (1)
- Drug screens (1)
- Hematology (1)
- Leukemias (1)
- Oncology (1)
- Red blood cell transfusion (1)
- anaemia (1)
- elderly patients (1)
- surgery (1)
Institute
- Medizin (3)
As new generations of targeted therapies emerge and tumor genome sequencing discovers increasingly comprehensive mutation repertoires, the functional relationships of mutations to tumor phenotypes remain largely unknown. Here, we measured ex vivo sensitivity of 246 blood cancers to 63 drugs alongside genome, transcriptome, and DNA methylome analysis to understand determinants of drug response. We assembled a primary blood cancer cell encyclopedia data set that revealed disease-specific sensitivities for each cancer. Within chronic lymphocytic leukemia (CLL), responses to 62% of drugs were associated with 2 or more mutations, and linked the B cell receptor (BCR) pathway to trisomy 12, an important driver of CLL. Based on drug responses, the disease could be organized into phenotypic subgroups characterized by exploitable dependencies on BCR, mTOR, or MEK signaling and associated with mutations, gene expression, and DNA methylation. Fourteen percent of CLLs were driven by mTOR signaling in a non–BCR-dependent manner. Multivariate modeling revealed immunoglobulin heavy chain variable gene (IGHV) mutation status and trisomy 12 as the most important modulators of response to kinase inhibitors in CLL. Ex vivo drug responses were associated with outcome. This study overcomes the perception that most mutations do not influence drug response of cancer, and points to an updated approach to understanding tumor biology, with implications for biomarker discovery and cancer care.
Background: Perioperative anaemia leads to impaired oxygen supply with a risk of vital organ ischaemia. In healthy and fit individuals, anaemia can be compensated by several mechanisms. Elderly patients, however, have less compensatory mechanisms because of multiple co-morbidities and age-related decline of functional reserves. The purpose of the study is to evaluate whether elderly surgical patients may benefit from a liberal red blood cell (RBC) transfusion strategy compared to a restrictive transfusion strategy.
Methods: The LIBERAL Trial is a prospective, randomized, multicentre, controlled clinical phase IV trial randomising 2470 elderly (≥ 70 years) patients undergoing intermediate- or high-risk non-cardiac surgery. Registered patients will be randomised only if Haemoglobin (Hb) reaches ≤9 g/dl during surgery or within 3 days after surgery either to the LIBERAL group (transfusion of a single RBC unit when Hb ≤ 9 g/dl with a target range for the post-transfusion Hb level of 9–10.5 g/dl) or the RESTRICTIVE group (transfusion of a single RBC unit when Hb ≤ 7.5 g/dl with a target range for the post-transfusion Hb level of 7.5–9 g/dl). The intervention per patient will be followed until hospital discharge or up to 30 days after surgery, whichever occurs first. The primary efficacy outcome is defined as a composite of all-cause mortality, acute myocardial infarction, acute ischaemic stroke, acute kidney injury (stage III), acute mesenteric ischaemia and acute peripheral vascular ischaemia within 90 days after surgery. Infections requiring iv antibiotics with re-hospitalisation are assessed as important secondary endpoint. The primary endpoint will be analysed by logistic regression adjusting for age, cancer surgery (y/n), type of surgery (intermediate- or high-risk), and incorporating centres as random effect.
Discussion: The LIBERAL-Trial will evaluate whether a liberal transfusion strategy reduces the occurrence of major adverse events after non-cardiac surgery in the geriatric population compared to a restrictive strategy within 90 days after surgery.
Trial registration: ClinicalTrials.gov (identifier: NCT03369210).
Purpose: Early detection of adenocarcinomas in the esophagus is crucial for achieving curative endoscopic therapy. Targeted biopsies of suspicious lesions, as well as four-quadrant biopsies, represent the current diagnostic standard. However, this procedure is time-consuming, cost-intensive, and examiner-dependent. The aim of this study was to test whether impedance spectroscopy is capable of distinguishing between healthy, premalignant, and malignant lesions. An ex vivo measurement method was developed to examine esophageal lesions using impedance spectroscopy immediately after endoscopic resection. Methods: After endoscopic resection of suspicious lesions in the esophagus, impedance measurements were performed on resected cork-covered tissue using a measuring head that was developed, with eight gold electrodes, over 10 different measurement settings and with frequencies from 100 Hz to 1 MHz. Results: A total of 105 measurements were performed in 60 patients. A dataset of 400 per investigation and a total of more than 42,000 impedance measurements were therefore collected. Electrical impedance spectroscopy (EIS) was able to detect dysplastic esophageal mucosa with a sensitivity of 81% in Barrett’s esophagus. Conclusion: In summary, EIS was able to distinguish different tissue characteristics in the different esophageal tissues. EIS thus holds potential for further development of targeted biopsies during surveillance endoscopy.