Refine
Document Type
- Bachelor Thesis (1)
- Doctoral Thesis (1)
- Master's Thesis (1)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
- Physik (3)
Wir haben uns in dieser Arbeit der Frage nach der Dissipation in niederenergetischen Schwerionenkollisionen gewidmet. Dissipation im Allgemeinen hat ihre Ursache in direkten Teilchenkollisionen, die in der Methode von TDHF bezüglich der Nukleonen fehlen. Im VUU-Modell sind sie dagegen ein zentraler Bestandteil der Zeitentwicklung und spielen bei mittleren und hohen Energien eine wichtige Rolle.
Mithilfe des VUU-Modells wurde deshalb versucht einen Einfluss der Nukleon-Nukleon-Kollsionen auf den Impulsstrom festzustellen, der an der Verbindungsstelle in der Reaktion 16O + 132Sn mit b = 7 fm und Ecm = 100 vorliegt. Dabei variierten wir den NN-Wirkungsquerschnitt im Kollisionsterm der VUU-Gleichung mit der Erwartung, dass eine daraus resultierende Verminderung bzw. Erhöhung der Stoßrate Auswirkungen auf die Geschwindigkeitsverteilungen der Materie zeigt. Ein positives Ergebnis hätte den Schluss nahegelegt, dass die mittlere freie Weglände und damit die Viskosität von Kernmaterie in Schwerionenkollisionen zu berücksichtigen ist.
Im Verlauf unserer Analyse haben wir festgestellt, dass die von uns verwendeten Methoden nicht zu den gewünschten Ergebnissen führten, z.T. auch weil die Kerne in den VUU-Rechnungen Instabilität aufwiesen und so die relevante Reaktionszeit einschgeschränkt wurde. Wir konnten einen Einfluss von direkten Teilchenkollisionen auf den Impulsstrom zwischen den Kernen des obigen Systems nicht verifizieren. Zusätzliche Simulationen an 12C + 12C mit b = 0 fm haben dann gezeigt, dass offenbar der allergrößte Teil der Nukleon-Nukleon-Kollisionen aufgrund des Pauli-Prinzips blockiert wird. Aus diesem Grund ziehen wir die Möglichkeit in Betracht, dass die starke Präsenz des Pauli-Prinzips im niederenergetischen Bereich die Stoßrate nicht nur maßgeblich reduziert, sondern damit direkte Stöße insgesamt kaum Einfluss auf den Impulsstrom und die Dissipation haben könnten. Die Dissipation ist demnach hauptsächlich auf einen Austausch üuber die Verbindungsstelle zweier Kerne zurückzuführen, was in weiterführender Literatur unter dem Stichwort window formula bekannt ist.
Weitere Untersuchungen in diese Richtung sind wünschenwert. Insbesondere ist es erforderlich das angesprochene Zeitproblem zu lösen, um eventuell die Stoßrate zu erhöhen. Dann könnte ein möglicher Einfluss auf den Impulsstrom wesentlich länger und detaillierter studiert werden. Es bietet sich zudem an, das benutzte Auswerteprogramme vuudens so abzuändern, dass z.B. ein feineres Gitter benutzt werden kann, auf dem die Dichten berechnet werden. Das so gesteigerte Auflösungsvermögen würde sicherlich die
Unzulänglichkeiten der in dieser Arbeit verwendeten Methoden reduzieren. Bei weiterem und tieferem Studium der besprochenen Prozesse könnte es natürlich sein, dass bessere Ansätze zur Analyse gefunden werden. Dies wäre in jedem Fall zu begrüßen.
Light scalar mesons can be understood as dynamically generated resonances. They arise as 'companion poles' in the propagators of quark-antiquark seed states when accounting for hadronic loop contributions to the self-energies of the latter. Such a mechanism may explain the overpopulation in the scalar sector - there exist more resonances with total spin J=0 than can be described within a quark model.
Along this line, we study an effective Lagrangian approach where the isovector state a_{0}(1450) couples via both non-derivative and derivative interactions to pseudoscalar mesons. It is demonstrated that the propagator has two poles: a companion pole corresponding to a_{0}(980) and a pole of the seed state a_{0}(1450). The positions of these poles are in quantitative agreement with experimental data. Besides that, we investigate similar models for the isodoublet state K_{0}^{*}(1430) by performing a fit to pion-kaon phase shift data in the I=1/2, J=0 channel. We show that, in order to fit the data accurately, a companion pole for the K_{0}^{*}(800), that is, the light kappa resonance, is required. A large-N_{c} study confirms that both resonances below 1 GeV are predominantly four-quark states, while the heavy states are quarkonia.
In this work we study basic properties of unstable particles and scalar hadronic resonances, respectively, within simple quantum mechanical and quantum field theoretical (effective) models. The term 'particle' is usually assigned to entities, described by physical theories, that are able to propagate over sufficiently large time scales (e.g. from a source to a detector) and hence could be identified in experiments - one especially should be able to measure some of their distinct properties like spin or charge. Nevertheless, it is well known that there exists a huge amount of unstable particles to which it seems difficult to allocate such definite values for their mass and decay width. In fact, for extremely short-lived members of that species, so called resonances, the theoretical description turns out to be highly complicated and requires some very interesting concepts of complex analysis.
In the first chapter, we start with the basic ideas of quantum field theory. In particular, we introduce the Feynman propagator for unstable scalar resonances and motivate the idea that this kind of correlation function should possess complex poles which parameterize the mass and decay width of the considered particle. We also brie
y discuss the problematic scalar sector in particle physics, emphasizing that hadronic loop contributions, given by strongly coupled hadronic intermediate states, dominate its dynamics. After that, the second chapter is dedicated to the method of analytic continuation of complex functions through branch cuts. As will be seen in the upcoming sections, this method is crucial in order to describe physics of scalar resonances because the relevant functions to be investigated (namely, the Feynman propagator of interacting quantm field theories) will also have branch cuts in the complex energy plane due to the already mentioned loop contributions. As is consensus among the physical community, the understanding of the physical behaviour of resonances requires a deeper insight of what is going on beyond the branch cut. This will lead us to the idea of a Riemann surface, a one-dimensional complex manifold on which the Feynman propagator is defined.
We then apply these concepts to a simple non-relativistic Lee model in the third chapter and demonstrate the physical implications, i.e., the motion of the propagator poles and the behaviour of the spectral function. Besides that, we investigate the time evolution of a particle described by such a model. All this will serve as a detailed preparation in order to encounter the rich phenomena occuring on the Riemann surface in quantum field theory. In the last chapter, we finally concentrate on a simple quantm field theoretical model which describes the decay of a scalar state into two (pseudo)scalar ones. It is investigated how the motion of the propagator poles is in
uenced by loop contributions of the two (pseudo)scalar particles. We perform a numerical study for a hadronic system involving a scalar seed state (alias the σ-meson) that couples to pions. The unexpected emergence of a putative stable state below the two-pion threshold is investigated and it is claeifieed under which conditions such a stable state appears.