Refine
Language
- English (99)
Has Fulltext
- yes (99)
Is part of the Bibliography
- no (99)
Keywords
- Heavy-ion collisions (4)
- Beam Energy Scan (2)
- Chiral Magnetic Effect (2)
- Crossover (2)
- Event-by-event fluctuation (2)
- Higher-order cumulant (2)
- QCD phase diagram (2)
- B-slope (1)
- Beam energy scan (1)
- Charm quark spatial diffusion coefficient (1)
Institute
We report the first multi-differential measurements of strange hadrons of K −, φ and − yields as well as the ratios of φ/K − and φ/− in Au+Au collisions at √sNN = 3 GeV with the STAR experiment fixed target configuration at RHIC. The φ mesons and − hyperons are measured through hadronic decay channels, φ → K + K − and Ξ− → Λπ−. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The 4π yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the φ/K − and φ/− ratios while the result of canonical ensemble (CE) calculations reproduce φ/K −, with the correlation length rc ∼ 2.7 fm, and φ/−, rc ∼ 4.2 fm, for the 0-10% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at 3 GeV implies a rather different medium property at high baryon density.
Measurement of cold nuclear matter effects for inclusive J/ψ in p+Au collisions at √sNN = 200 GeV
(2022)
Measurement by the STAR experiment at RHIC of the cold nuclear matter (CNM) effects experienced by inclusive J/ψ at mid-rapidity in 0-100% p+Au collisions at √sNN = 200 GeV is presented. Such effects are quantified utilizing the nuclear modification factor, RpAu, obtained by taking a ratio of J/ψ yield in p+Au collisions to that in p+p collisions scaled by the number of binary nucleon-nucleon collisions. The differential J/ψ yield in both p+p and p+Au collisions is measured through the dimuon decay channel, taking advantage of the trigger capability provided by the Muon Telescope Detector in the RHIC 2015 run. Consequently, the J/ψ RpAu is derived within the transverse momentum (pT) range of 0 to 10 GeV/c. A suppression of approximately 30% is observed for pT < 2 GeV/c, while J/ψ RpAu becomes compatible with unity for pT greater than 3 GeV/c, indicating the J/ψ yield is minimally affected by the CNM effects at high pT. Comparison to a similar measurement from 0-20% central Au+Au collisions reveals that the observed strong J/ψ suppression above 3 GeV/c is mostly due to the hot medium effects, providing strong evidence for the formation of the quark-gluon plasma in these collisions. Several model calculations show qualitative agreement with the measured J/ψ RpAu, while their agreement with the J/ψ yields in p+p and p+Au collisions is worse.
We report a systematic measurement of cumulants, Cn, for net-proton, proton and antiproton multiplicity distributions, and correlation functions, κn, for proton and antiproton multiplicity distributions up to the fourth order in Au+Au collisions at sNN−−−√ = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The Cn and κn are presented as a function of collision energy, centrality and kinematic acceptance in rapidity, y, and transverse momentum, pT. The data were taken during the first phase of the Beam Energy Scan (BES) program (2010 -- 2017) at the BNL Relativistic Heavy Ion Collider (RHIC) facility. The measurements are carried out at midrapidity (|y|< 0.5) and transverse momentum 0.4 < pT < 2.0 GeV/c, using the STAR detector at RHIC. We observe a non-monotonic energy dependence (sNN−−−√ = 7.7 -- 62.4 GeV) of the net-proton C4/C2 with the significance of 3.1σ for the 0-5\% central Au+Au collisions. This is consistent with the expectations of critical fluctuations in a QCD-inspired model. Thermal and transport model calculations show a monotonic variation with sNN−−−√. For the multiparticle correlation functions, we observe significant negative values for a two-particle correlation function, κ2, of protons and antiprotons, which are mainly due to the effects of baryon number conservation. Furthermore, it is found that the four-particle correlation function, κ4, of protons plays a role in determining the energy dependence of proton C4/C1 below 19.6 GeV, which cannot be understood by the effect of baryon number conservation.
Understanding gluon density distributions and how they are modified in nuclei are among the most important goals in nuclear physics. In recent years, diffractive vector meson production measured in ultra-peripheral collisions (UPCs) at heavy-ion colliders has provided a new tool for probing the gluon density. In this Letter, we report the first measurement of J/ψ photoproduction off the deuteron in UPCs at the center-of-mass energy sNN−−−√=200 GeV in d+Au collisions. The differential cross section as a function of momentum transfer −t is measured. In addition, data with a neutron tagged in the deuteron-going Zero-Degree Calorimeter is investigated for the first time, which is found to be consistent with the expectation of incoherent diffractive scattering at low momentum transfer. Theoretical predictions based on the Color Glass Condensate saturation model and the gluon shadowing model are compared with the data quantitatively. A better agreement with the saturation model has been observed. With the current measurement, the results are found to be directly sensitive to the gluon density distribution of the deuteron and the deuteron breakup, which provides insights into the nuclear gluonic structure.
The STAR Collaboration reports measurements of back-to-back azimuthal correlations of di-π0s produced at forward pseudorapidities (2.6<η<4.0) in p+p, p+Al, and p+Au collisions at a center-of-mass energy of 200 GeV. We observe a clear suppression of the correlated yields of back-to-back π0 pairs in p+Al and p+Au collisions compared to the p+p data. The observed suppression of back-to-back pairs as a function of transverse momentum suggests nonlinear gluon dynamics arising at high parton densities. The larger suppression found in p+Au relative to p+Al collisions exhibits a dependence of the saturation scale, Q2s, on the mass number, A. A linear scaling of the suppression with A1/3 is observed with a slope of −0.09 ± 0.01.
The STAR Collaboration reports measurements of the transverse single-spin asymmetries, AN, for inclusive jets and identified `hadrons within jets' production at midrapidity from transversely polarized pp collisions at s√ = 200 GeV, based on data recorded in 2012 and 2015. The inclusive jet asymmetry measurements include AN for inclusive jets and AN for jets containing a charged pion carrying a momentum fraction z>0.3 of the jet momentum. The identified hadron within jet asymmetry measurements include the Collins effect for charged pions, kaons and protons, and the Collins-like effect for charged pions. The measured asymmetries are determined for several distinct kinematic regions, characterized by the jet transverse momentum pT and pseudorapidity η, as well as the hadron momentum fraction z and momentum transverse to the jet axis jT. These results probe higher momentum scales (Q2 up to ∼\,900 GeV2) than current, semi-inclusive deep inelastic scattering measurements, and they provide new constraints on quark transversity in the proton and enable tests of evolution, universality and factorization breaking in the transverse-momentum-dependent formalism.
We report the first multi-differential measurements of strange hadrons of K−, ϕ and Ξ− yields as well as the ratios of ϕ/K− and ϕ/Ξ− in Au+Au collisions at sNN−−−√=3GeV with the STAR experiment fixed target configuration at RHIC. The ϕ mesons and Ξ− hyperons are measured through hadronic decay channels, ϕ→K+K− and Ξ−→Λπ−. Collision centrality and rapidity dependence of the transverse spectra for these strange hadrons are presented. The 4π yields and ratios are compared to thermal model and hadronic transport model predictions. At the collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the ϕ/K− ratio while the result of canonical ensemble (CE) calculations reproduce well the ratios of ϕ/K−, with the correlation length rc∼2.7\,fm, and ϕ/Ξ−, rc∼4.2\,fm, for the 0-10\% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at 3GeV implies a rather different medium property at high baryon density.
We report on the first multi-differential measurement of ϕ meson and Ξ− hyperon production as well as the ϕ/K− and ϕ/Ξ− ratio in Au+Au collisions at sNN−−−√=3GeV with the STAR experiment under its fixed targ et configuration at RHIC. ϕ mesons and Ξ− hyperons are measured through their hadronic decay channels, ϕ→K+K− and Ξ−→Λπ−. The transverse kinetic energy spectra of K−, ϕ and Ξ− are presented in different centrality and rapidity intervals. The total production yields and the ratios within a 4π coverage are calculated and compared to thermal model predictions. A calculation within the grand canonical ensemble framework shows a clear discrepancy from our measurement. Our data favor the canonical ensemble approach employing local strangeness conservation with a small strangeness correlation length (rc≤4.2 fm) in 0--10\% central Au+Au collisions at sNN−−−√=3GeV.
The STAR Collaboration reports measurements of the transverse single-spin asymmetries, AN, for inclusive jets and identified `hadrons within jets' production at midrapidity from transversely polarized pp collisions at s√ = 200 GeV, based on data recorded in 2012 and 2015. The inclusive jet asymmetry measurements include AN for inclusive jets and AN for jets containing a charged pion carrying a momentum fraction z>0.3 of the jet momentum. The identified hadron within jet asymmetry measurements include the Collins effect for charged pions, kaons and protons, and the Collins-like effect for charged pions. The measured asymmetries are determined for several distinct kinematic regions, characterized by the jet transverse momentum pT and pseudorapidity η, as well as the hadron momentum fraction z and momentum transverse to the jet axis jT. These results probe higher momentum scales (Q2 up to ∼\,900 GeV2) than current, semi-inclusive deep inelastic scattering measurements, and they provide new constraints on quark transversity in the proton and enable tests of evolution, universality and factorization breaking in the transverse-momentum-dependent formalism.
We report the first multi-differential measurements of strange hadrons of K−, ϕ and Ξ− yields as well as the ratios of ϕ/K− and ϕ/Ξ− in Au+Au collisions at sNN−−−√=3GeV with the STAR experiment fixed target configuration at RHIC. The ϕ mesons and Ξ− hyperons are measured through hadronic decay channels, ϕ→K+K− and Ξ−→Λπ−. Collision centrality and rapidity dependence of the transverse momentum spectra for these strange hadrons are presented. The 4π yields and ratios are compared to thermal model and hadronic transport model predictions. At this collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the ϕ/K− and ϕ/Ξ− ratios while the result of canonical ensemble (CE) calculations reproduce ϕ/K−, with the correlation length rc∼2.7\,fm, and ϕ/Ξ−, rc∼4.2\,fm, for the 0-10\% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at 3GeV implies a rather different medium property at high baryon density.