Refine
Document Type
- Article (9)
- diplomthesis (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
Institute
- Physik (11)
- Sportwissenschaften (2)
Um zu sehen, was im atomaren Bereich "die Welt im Innersten zusammenhält", werden seit fast einem Jahrhundert atomphysikalische Stoßexperimente durchgeführt. Es ist also möglich, durch den Beschuß von "Targetteilchen" mit "Projektilteilchen" Aussagen über verschiedene Größen in der atomaren Welt zu treffen. Hierbei werden nicht nur Eigenschaften wie der "Durchmesser" oder eine "Ladungsverteilung" eines Atoms untersuchbar, sondern - durch entsprechend geschickte Variation des Prinzips "Stoßexperiment" - auch Größen, die ein Laie niemals mit einem Stoß zwischen zwei Teilchen in Verbindung brächte. Moderne Experimente erlauben es inzwischen zum Beispiel, selektiv die Impulsverteilung einzelner Elektronen in Atomen und Molekülen sichtbar zu machen, indem diese durch Photonen entsprechender Energie aus dem zu untersuchenden Teilchen herausgerissen werden. Besagte Experimente stellen nicht nur hohe Anforderungen an die Nachweiseinheit, die den eigentlichen Prozeß sichtbar macht, sondern auch an das verwendete Target und das Projektil. Im Bereich der atomaren Grundlagenforschung bietet sich Helium als zu untersuchendes Objekt oftmals an. Um die Natur zu verstehen, ist es nötig, gemessene Größen mit einer Theorie, die den untersuchten Vorgang beschreiben soll, zu vergleichen. Im Bereich der theoretischen Physik kann bisher nur das Wasserstoffatom, das ein sog. "Zweikörperproblem" ist, ohne Näherungsverfahren vollständig beschrieben werden. Ein Heliumatom stellt also das "einfachste" atomare System dar, das als noch nicht "komplett verstanden" gilt. Genauso ist ein Heliumatom mit seinem Atomkern und seinen zwei Elektronen das erste "Mehrelektronensystem" im Periodensystem. Es können hier also im Vergleich zu Wasserstoff auch Korrelationseffekte zwischen Elektronen untersucht werden. Die gesamte Dynamik innerhalb des Atoms erhält einen anderen Charakter. Bisherige Experimente mit Helium innerhalb unserer Arbeitsgruppe haben allerdings eine prinzipielle Beschränkung: es ist im Allgemeinen sehr schwierig, den Spin der beteiligten Elektronen im Experiment nachzuweisen, so daß alle bisherigen Messungen immer die Einstellung der Elektronenspins nicht berücksichtigen. Es wird also über den Spin gemittelt gemessen. Ein Weg, dieses Problem zu umgehen, ist, neben einer wirklichen Messung des Spins, den Spin im Anfangszustand - also vor dem Streuexperiment - zu kennen. Dies geschieht in der vorliegenden Arbeit dadurch, daß Heliumatome in einem durch "Mikrostrukturelektroden" erzeugten Mikroplasma angeregt werden, und sich so die Spins ihrer beiden Elektronen zum Teil auch parallel zueinander einstellen. Während bisherige Ansätze das Prinzip verfolgen, die angeregten Heliumatome in Niederdruckplasmen bei einigen Millibar zu erzeugen, wird die Plasmaquelle in dieser Arbeit bei Drücken von bis zu einem Bar betrieben. Dadurch kann das Prinzip des "supersonic jets" ausgenutzt werden, so daß der hier erzeugte Atomstrahl eine interne Temperatur von einigen Millikelvin und eine mittlere Geschwindigkeit von 1000 m/s besitzt. Durch einen nur 10 cm langen Separationsmagneten werden die angeregten Zustände mit Spin (#; #) von den Zuständen mit Spin ("; ") und den nicht- angeregten Heliumatomen getrennt und in einem Fokuspunkt für ein Streuexperiment zur Verfügung gestellt. In der folgenden Arbeit wird also ein sehr kompakter Aufbau eines Gastargets aus angeregtem Helium mit polarisiertem Elektronenspin vorgestellt. Ein Target aus angeregtem Helium hat außerdem einen weiteren großen Vorteil gegenüber gewöhnlichen Heliumtargets. In der modernen experimentellen Physik werden oftmals Laser zur Manipulation von Atomen eingesetzt. So ist es möglich, durch gezielte Anregung eines Atoms mit einem Laser dieses zum Beispiel extrem zu kühlen. Hierzu müssen allerdings Anregungsniveaus im Atom zur Verfügung stehen, die mit den Wellenlängen heutiger Laser erreicht werden können. Das erste Anregungsniveau von Helium liegt jedoch mit 19.8 eV deutlich zu hoch. Der nächst höhere P-Zustand ist von diesem Niveau aber nur noch ca. 1.1 eV entfernt. Photonen dieser Energie können leicht mit Lasern erzeugt werden. Angeregtes Helium ist also durch Laser manipulierbar und liefert so zum Beipiel auch den Ausgangspunkt für die Bose-Einstein Kondensation von Helium.
Chirality is omnipresent in living nature. On the single molecule level, the response of a chiral species to a chiral probe depends on their respective handedness. A prominent example is the difference in the interaction of a chiral molecule with left or right circularly polarized light. In the present study, we show by Coulomb explosion imaging that circularly polarized light can also induce a chiral fragmentation of a planar and thus achiral molecule. The observed enantiomer strongly depends on the orientation of the molecule with respect to the light propagation direction and the helicity of the ionizing light. This finding might trigger new approaches to improve laser-driven enantioselective chemical synthesis.
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H2 two-electron wave function in which electron–electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.
How long does it take to emit an electron from an atom? This question has intrigued scientists for decades. As such emission times are in the attosecond regime, the advent of attosecond metrology using ultrashort and intense lasers has re-triggered strong interest on the topic from an experimental standpoint. Here, we present an approach to measure such emission delays, which does not require attosecond light pulses, and works without the presence of superimposed infrared laser fields. We instead extract the emission delay from the interference pattern generated as the emitted photoelectron is diffracted by the parent ion’s potential. Targeting core electrons in CO, we measured a 2d map of photoelectron emission delays in the molecular frame over a wide range of electron energies. The emission times depend drastically on the photoelectrons’ emission directions in the molecular frame and exhibit characteristic changes along the shape resonance of the molecule.
Influence of the emission site on the photoelectron circular dichroism in trifluoromethyloxirane
(2022)
We report a joint experimental and theoretical study of the differential photoelectron circular dichroism (PECD) in inner-shell photoionization of uniaxially oriented trifluoromethyloxirane. By adjusting the photon energy of the circularly polarized synchrotron radiation, we address 1s-photoionization of the oxygen, different carbon, and all fluorine atoms. The photon energies were chosen such that in all cases electrons with a similar kinetic energy of about 11 eV are emitted. Employing coincident detection of electrons and fragment ions, we concentrate on identical molecular fragmentation channels for all of the electron-emitter scenarios. Thereby, we systematically examine the influence of the emission site of the photoelectron wave on the differential PECD. We observe large differences in the PECD signals. The present experimental results are supported by corresponding relaxed-core Hartree–Fock calculations.
When a very strong light field is applied to a molecule an electron can be ejected by tunneling. In order to quantify the time-resolved dynamics of this ionization process, the concept of the Wigner time delay can be used. The properties of this process can depend on the tunneling direction relative to the molecular axis. Here, we show experimental and theoretical data on the Wigner time delay for tunnel ionization of H2 molecules and demonstrate its dependence on the emission direction of the electron with respect to the molecular axis. We find, that the observed changes in the Wigner time delay can be quantitatively explained by elongated/shortened travel paths of the emitted electrons, which occur due to spatial shifts of the electrons’ birth positions after tunneling. Our work provides therefore an intuitive perspective towards the Wigner time delay in strong-field ionization.
A central motivation for the development of x-ray free-electron lasers has been the prospect of time-resolved single-molecule imaging with atomic resolution. Here, we show that x-ray photoelectron diffraction—where a photoelectron emitted after x-ray absorption illuminates the molecular structure from within—can be used to image the increase of the internuclear distance during the x-ray-induced fragmentation of an O2 molecule. By measuring the molecular-frame photoelectron emission patterns for a two-photon sequential K-shell ionization in coincidence with the fragment ions, and by sorting the data as a function of the measured kinetic energy release, we can resolve the elongation of the molecular bond by approximately 1.2 a.u. within the duration of the x-ray pulse. The experiment paves the road toward time-resolved pump-probe photoelectron diffraction imaging at high-repetition-rate x-ray free-electron lasers.
Mit der vorliegenden Arbeit ist der eindeutige experimentelle Nachweis für die Existenz eines 1997 [Ced97] vorhergesagten, neuartigen Zerfallskanals für Van-der-Waals-gebundene Systeme erbracht worden. Die Untersuchungen wurden an einem Neondimer durchgeführt. Erzeugt man in einem Atom dieses Dimers durch Synchrotronstrahlung eine 2s-Vakanz, so wird diese durch ein 2p-Elektron aufgefüllt. Die hierbei freiwerdende Energie wird an das zweite Atom des Dimers in Form eines virtuellen Photons übertragen und löst dort ein Elektron aus einer äußeren Schale. Untersucht wurde dieser Zerfall namens „Interatomic Coulombic Decay” (ICD) durch Koinzidenzimpulsspektroskopie (COLTRIMS) [Doe00, Ull03, Jah04b]. Der Nachweis der Existenz des Effekts erfolgte dadurch, dass die Summe der Energien der Photofragmente - und im Speziellen des ICD-Elektrons und der beiden im Zerfall entstehenden Ne+-Ionen - eine Konstante ist. Durch die koinzidente Messung der Impulse, der im Zerfall entstehenden Teilchen, konnte hierdurch ICD eindeutig identifiziert werden. Die Übereinstimmung der gemessenen Energiespektren mit aktuellen theoretischen Vorhersagen [Sche04b, Jah04c] ist exzellent. Dadurch, dass das Dimer nach dem IC-Zerfall in einer Coulomb-Explosion fragmentiert, konnten des Weiteren Untersuchungen, wie sie in den letzten Jahren an einfachen Molekülen durchgeführt wurden [Web01, Lan02, Jah02, Web03b, Osi03b, Jah04a], auch am Neondimer erfolgen: Durch die Messung der Ausbreitungsrichtung der ionischen Fragmente des Dimers nach der Coulomb-Explosion wird die räumliche Ausrichtung des Dimers zum Zeitpunkt der Photoionisation bestimmt. Die gemessenen Impulse der emittierten Elektronen können dadurch im Bezug zur Dimerachse dargestellt werden. In dieser Arbeit wurden somit Messungen der Winkelverteilung der 2s-Photoelektronen und des ICD-Elektrons im laborfesten und auch dimerfesten Bezugssystem vorgestellt und mit vorhandenen theoretischen Vorhersagen verglichen. Die Winkelverteilung des Photoelektrons ähnelt stark der Verteilung, die man nach der Photoionisation eines einzelnen Neonatoms erhält und hat somit fast reinen Dipolcharakter. Die Präsenz des zweiten Atoms des Dimers verursacht nur leichte Modulationen, so dass auch die Änderung der Ausrichtung der Dimerachse im Bezug zur Polarisationsrichtung des linear polarisierten Lichtes nur geringe Auswirkungen hat. Durch die koinzidente Messung aller vier nach der Photoionisation entstehenden Teilchen konnte außerdem ein weiterer Doppelionisationsmechanismus des Dimers nachgewiesen werden: Ähnlich wie in einzelnen Atomen [Sam90] gibt es auch in Clustern den TS1-Prozess. Hierbei wird ein 2p-Elektron aus dem einen Atom des Dimers herausgelöst. Es streut dann an einem 2p-Elektron des anderen Atoms, das hierdurch ionisiert wird. Diese etwas andere Form des TS1 im Cluster ist also genau wie ICD ein interatomarer Vorgang. Die Summe der Energien der beiden, in diesem Prozess entstehenden Elektronen hat einen festen Wert von h... − 2 · IP(2p) − KER = 12 eV, so dass dieser Prozess hierdurch im Experiment gefunden werden konnte. Die gemessenen Zwischenwinkel zwischen den beiden Elektronen zeigen des Weiteren genau die für zwei sich abstoßende Teilchen typische Verteilung einer Gauss-Kurve mit einem Maximum bei 180 Grad. Da im Falle von interatomarem TS1 die Potentialkurve der Coulomb-Explosion direkt aus dem Grundzustand populiert wird, konnte im Rahmen der „Reflexion Approximation” die Wahrscheinlichkeitsverteilung der Abstände der beiden Dimeratome experimentell visualisiert werden. Das Betragsquadrat des Kernanteils der Dimergrundzustandswellenfunktion wurde somit direkt vermessen. Die Messungen wurden bei drei verschiedenen Photonenenergien durchgeführt, um die Ergebnisse weiter abzusichern und robuster gegen eventuelle systematische Fehler zu machen. Da kein isotopenreines Neongas im Experiment eingesetzt wurde, konnten genauso Ionisations- und ICD-Ereignisse von isotopischen Dimeren (20Ne22Ne) beobachtet und ausgewertet werden. Die gemessenen Spektren sind innerhalb der Messtoleranzen identisch zu denen für 20Ne2.
We experimentally investigated the quasifree mechanism (QFM) in one-photon double ionization of He and H2 at 800 eV photon energy and circular polarization with a COLTRIMS reaction microscope. Our work provides new insight into this elusive photoionization mechanism that was predicted by Miron Amusia more than four decades ago. We found the distinct four-fold symmetry in the angular emission pattern of QFM electrons from H2 double ionization that has previously only been observed for He. Furthermore, we provide experimental evidence that the photon momentum is not imparted onto the center of mass in quasifree photoionization, which is in contrast to the situation in single ionization and in double ionization mediated by the shake-off and knock-out mechanisms. This finding is substantiated by numerical results obtained by solving the system’s full-dimensional time-dependent Schrödinger equation beyond the dipole approximation.